精英家教网 > 初中数学 > 题目详情

【题目】在等腰直角三角形ABC中,AB=AC,∠BAC=90°.点P为直线AB上一个动点(点P不与点A,B重合),连接PC,点D在直线BC上,且PD=PC.过点P作PE^PC,点D,E在直线AC的同侧,且PE=PC,连接BE.
(1)情况一:当点P在线段AB上时,图形如图1 所示;
情况二:如图2,当点P在BA的延长线上,且AP<AB时,请依题意补全图2;.

(2)请从问题(1)的两种情况中,任选一种情况,完成下列问题:
①求证:∠ACP=∠DPB;
②用等式表示线段BC,BP,BE之间的数量关系,并证明.

【答案】
(1)

解:补全图形如图①所示


(2)

解:情况一:

①证明:如图②,

∵AB=AC,∠BAC=90°,

∴∠ABC=∠ACB=45°,

∵PD=PC,

∴∠1=∠D,

∵∠ACB=∠1+∠2=45°,∠ABC=∠D+∠=45°,

∴∠3=∠2,

即∠ACP=∠DPB;

②BC= BP+BE;理由:

证明:如图③过P作PF⊥PB交BC于F,

∵PF⊥PB,

∴∠BPF=90°,

∵EP⊥PC,

∴∠EPC=90°,

∴∠4+∠5=∠6+∠5,

∴∠4=∠6,

∵∠PBF=45°,

∴∠PBF=∠PFB=45°,

∴PB=PF,

在△PBE与△PFC中,

∴△PBE≌△PFC,

∴BE=FC,

∵BF= BP,

∴BC=BF+FC= BP+BE.

情况二:①如图④,

∵PD=PC,

∴∠PDC=∠PCD,

∵∠ABC=∠ACB=45°,

∴∠3=∠PDC﹣45°,∠ACP=∠PCD﹣45°

,∴∠BPD=∠ACP;

②如图④,过P作PF⊥PB交BC于F,

∵PF⊥PB,

∴∠BPF=90°,

∵EP⊥PC,

∴∠EPC=90°,

∴∠4+∠BPC=∠6+∠BPC=90°,

∴∠4=∠6,

∵∠PBF=45°,

∴∠PBF=∠PFB=45°,

∴PB=PF,

在△PBE与△PFC中,

∴△PBE≌△PFC,

∴BE=FC,

∵BF= BP,

∴BC=BF﹣FC= BP﹣BE.


【解析】(1)根据题意补全图形即可;(2)情况一:①根据等腰直角三角形的性质得到∠ABC=∠ACB=45°,由等腰三角形的性质得到∠1=∠D根据三角形的外角的性质即可得到结论;②根据余角的性质得到∠4=∠6,由等腰直角三角形的性质得到∠PBF=∠PFB=45°,于是得到PB=PF,根据全等三角形的性质得到BE=FC,由勾股定理得到BF= BP,即可得到结论;
情况二:①,根据等腰三角形的性质得到∠PDC=∠PCD,由∠ABC=∠ACB=45°,于是得到∠3=∠PDC﹣45°,∠ACP=∠PCD﹣45°,即可得到结论;根据余角的性质得到∠4=∠6,根据等腰直角三角形的性质得到∠PBF=∠PFB=45°,于是得到PB=PF,根据全等三角形的性质得到BE=FC,根据勾股定理得到BF= BP于是得到结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,ADBCD , 下列条件:①∠B+∠DAC=90°;②∠B=∠DAC;③ = ;④AB2=BDBC . 其中一定能够判定△ABC是直角三角形的有(  )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,点D、E分别是等边△ABCAC、AB上的点,连接BD、CE,若AE=CD,求证:BD=CE.

(2)如图2,在(1)问的条件下,点HBA的延长线上,连接CHBD延长线于点F.BF=BC,

求证:EH=EC;

请你找出线段AH、AD、DF之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究函数y=x+ 的图象与性质
(1)函数y=x+ 的自变量x的取值范围是
(2)下列四个函数图象中,函数y=x+ 的图象大致是

(3)对于函数y=x+ ,求当x>0时,y的取值范围.
请将下面求解此问题的过程补充完整:
解:∵x>0
∴y=x+
=( 2+( 2
=( 2+
∵( 2≥0,
∴y
(4)若函数y= ,则y的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,反比例函数y1= 的图象与一次函数y2=ax+b的图象交于点A(1,3)和B(﹣3,m).
(1)求反比例函数y1= 和一次函数y2=ax+b的表达式;
(2)点C 是坐标平面内一点,BC∥x 轴,AD⊥BC 交直线BC 于点D,连接AC.若AC= CD,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,AB=AC,∠A=30°,以B为圆心,BC长为半径画弧,分别交AC,AB于D,E两点,并连结BD,DE. 则∠BDE的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,点H在⊙O上,E是 的中点,过点E作EC⊥AH,交AH的延长线于点C.连接AE,过点E作EF⊥AB于点F.

(1)求证:CE是⊙O的切线;
(2)若FB=2,tan∠CAE= ,求OF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,线段AC和直线l分别垂直线段AB于点A,B.点P是线段AB上的一个动点,由A移动到B,连接CP,过点P作PD⊥CP交l于点D,设线段AP的长为x,BD的长为y,在下列图象中,能大致表示y与x之间函数关系的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)

(1)求抛物线的解析式;
(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.
(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案