精英家教网 > 初中数学 > 题目详情
用两种边长相等的正多边形不能铺满地面的是(  )
A、正三角形和正方形B、正三角形和正五边形C、正三角形和正六边形D、正方形和正八边形
分析:分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可作出判断.
解答:解:正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,能铺满;
正三角形的每个内角是60°,正五边形每个内角是180°-360°÷5=108°,60m+108n=360°,m=6-
9
5
n,显然n取任何正整数时,m不能得正整数,故不能铺满;
正三角形每个内角60度,正六边形每个内角120度,2×120+2×120=360度,所以能铺满;
正方形每个内角90度,正八边形每个内角135度,135×2+90=360度,能铺满.
故选B.
点评:几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2、为了美化校园环境,在学校广场用两种边长相等的正多边形地砖镶地面,现已有一种正方形,则另一种正多边形可以是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

我们常用各种多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里称为平面密铺).当围绕一点拼在一起的几个多边形的内角和为360°时,就能够拼成一个平面图形.
探究用同一种正多边形进行平面密铺.
例如:如图1,用三个同种类型(大小一样、形状相同)的正六边形地砖可以平面密铺.
(1)请问仅限于同一种类型的多边形进行密铺,哪几种能平面密铺?
①②
①②
(填序号);
①正三角形    ②正四边形     ③正五边形     ④正八边形
探究用两种边长相等的正多边形进行平面密铺.
例如:如图2,二个正三角形和二个正六边形可以平面密铺.
(2)限用两种边长相等的正多边形进行平面密铺,以下哪几种是可行的?
ABE
ABE

A.正三角形和正方形      B.正方形和正八边形         C.正方形和正五边形
D.正八边形和正六边形    E.正三角形和正十二边形    F.正三角形和正五边形
(3)继续推广到用三种不同的正多边形进行平面密铺,请写出符合题意的不同组合.
例如:①正三角形、正方形、正六边形;
②正三角形、正九边形、正十八边形;
正三角形、正四边形,正十二边形
正三角形、正四边形,正十二边形

正三角形,正十边形,正十五边形
正三角形,正十边形,正十五边形

(4)如果用形状,大小相同的如图3方格纸中的三角形,能进行平面密铺吗?若能,请在方格纸中画出密铺的设计图.

查看答案和解析>>

同步练习册答案