精英家教网 > 初中数学 > 题目详情
(2006•济南)如图,用8个积木搭成了3×3×3的立方休,其中1×1×3的长方体有3个,1×2×3的长方体有2个,2×2×1的长方体有1个,1×1×1的立方体有2个.某人站在该立方体的左侧观察,请你判断他看到的图形是( )
A.
B.
C.
D.
【答案】分析:找到从左面看所得到的图形即可.
解答:解:由题意可判断,黑色的为1×1×3的长方体;白色的为1×2×3的长方体,由斜纹的是2×2×1的长方体,灰色的为1×1×1的立方体,那么做左面看可得到三个上下相邻的长方形,其中,最上面的那个为一个正方形和一个长方形的组合体.故选D.
点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
练习册系列答案
相关习题

科目:初中数学 来源:2011年江苏省南通市启东中学中考数学模拟试卷(三)(解析版) 题型:解答题

(2006•济南)如图1,以矩形OABC的两边OA和OC所在的直线为x轴、y轴建立平面直角坐标系,A点的坐标为(3,0),C点的坐标为(0,4).将矩形OABC绕O点逆时针旋转,使B点落在y轴的正半轴上,旋转后的矩形为OA1B1C1,BC,A1B1相交于点M.
(1)求点B1的坐标与线段B1C的长;
(2)将图1中的矩形OA1B1C1沿y轴向上平移,如图2,矩形PA2B2C2是平移过程中的某一位置,BC,A2B2相交于点M1,点P运动到C点停止.设点P运动的距离为x,矩形PA2B2C2与原矩形OABC重叠部分的面积为y,求y关于x的函数关系式,并写出x的取值范围;
(3)如图3,当点P运动到点C时,平移后的矩形为PA3B3C3.请你思考如何通过图形变换使矩形PA3B3C3与原矩形OABC重合,请简述你的做法.

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《反比例函数》(04)(解析版) 题型:填空题

(2006•济南)如图,L1是反比例函数y=在第一象限内的图象,且过点A(2,1),L2与L1关于x轴对称,那么图象L2的函数解析式为    (x>0).

查看答案和解析>>

科目:初中数学 来源:2009年中考数学模拟检测试卷(2)(解析版) 题型:填空题

(2006•济南)如图,L1是反比例函数y=在第一象限内的图象,且过点A(2,1),L2与L1关于x轴对称,那么图象L2的函数解析式为    (x>0).

查看答案和解析>>

科目:初中数学 来源:2006年山东省济南市中考数学试卷(课标卷)(解析版) 题型:解答题

(2006•济南)如图1,以矩形OABC的两边OA和OC所在的直线为x轴、y轴建立平面直角坐标系,A点的坐标为(3,0),C点的坐标为(0,4).将矩形OABC绕O点逆时针旋转,使B点落在y轴的正半轴上,旋转后的矩形为OA1B1C1,BC,A1B1相交于点M.
(1)求点B1的坐标与线段B1C的长;
(2)将图1中的矩形OA1B1C1沿y轴向上平移,如图2,矩形PA2B2C2是平移过程中的某一位置,BC,A2B2相交于点M1,点P运动到C点停止.设点P运动的距离为x,矩形PA2B2C2与原矩形OABC重叠部分的面积为y,求y关于x的函数关系式,并写出x的取值范围;
(3)如图3,当点P运动到点C时,平移后的矩形为PA3B3C3.请你思考如何通过图形变换使矩形PA3B3C3与原矩形OABC重合,请简述你的做法.

查看答案和解析>>

科目:初中数学 来源:2006年山东省济南市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2006•济南)如图1,以矩形OABC的两边OA和OC所在的直线为x轴、y轴建立平面直角坐标系,A点的坐标为(3,0),C点的坐标为(0,4).将矩形OABC绕O点逆时针旋转,使B点落在y轴的正半轴上,旋转后的矩形为OA1B1C1,BC,A1B1相交于点M.
(1)求点B1的坐标与线段B1C的长;
(2)将图1中的矩形OA1B1C1沿y轴向上平移,如图2,矩形PA2B2C2是平移过程中的某一位置,BC,A2B2相交于点M1,点P运动到C点停止.设点P运动的距离为x,矩形PA2B2C2与原矩形OABC重叠部分的面积为y,求y关于x的函数关系式,并写出x的取值范围;
(3)如图3,当点P运动到点C时,平移后的矩形为PA3B3C3.请你思考如何通过图形变换使矩形PA3B3C3与原矩形OABC重合,请简述你的做法.

查看答案和解析>>

同步练习册答案