精英家教网 > 初中数学 > 题目详情
31、先阅读下列解题过程,然后完成后面的题目.
分解因式:x4+4
解:x4+4=x4+4x2+4-4x2=(x2+2)2-4x2
=(x2+2x+2)(x2-2x+2)
以上解法中,在x4+4的中间加上一项,使得三项组成一个完全平方式,为了使这个式子的值保持与x4+4的值保持不变,必须减去同样的一项.按照这个思路,试把多项式x4+x2y2+y4分解因式.
分析:把原式中的第二项的系数1变为2-1,化简后三项结合构成完全平方式,剩下的一项写出完全平方式,然后再利用平方差公式即可分解因式.
解答:解:x4+x2y2+y4=x4+2x2y2+y4-x2y2(2分)
=(x2+y22-x2y2(2分)
=(x2+y2+xy)(x2+y2-xy).(2分)
点评:此题考查学生阅读新方法并灵活运用新方法的能力,考查了分组分解法进行分解因式,是一道中档题.本题的思路是添项构成完全平方式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

请先阅读下列解题过程,再解答所提的问题:
解:
a-2
a2-1
-
2
1-a
=
a-2
(a+1)(a-1)
-
2
(a-1)
…第一步
=
a-2
(a+1)(a-1)
-
2(a+1)
(a+1)(a-1)
…第二步
=a-2-2(a+1)…第三步
=-a-4…第四步
解答下列问题:
(1)上述解题过程是从哪步开始出现错误的:
 

(2)从第二步到第三步是否正确:
 
,若不正确,错误的原因是
 

(3)请写出正确的解题过程.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读下列解题过程,然后解答问题(1)、(2)、(3).
例:解绝对值方程:|2x|=1.
解:讨论:①当x≥0时,原方程可化为2x=1,它的解是x=
1
2

②当x<0时,原方程可化为-2x=1,它的解是x=-
1
2

∴原方程的解为x=
1
2
和-
1
2

问题(1):依例题的解法,方程|
1
2
x|
=3的解是
x=6和-6
x=6和-6

问题(2):尝试解绝对值方程:2|x-2|=6;
问题(3):在理解绝对值方程解法的基础上,解方程:|x-2|+|x-1|=3.

查看答案和解析>>

科目:初中数学 来源: 题型:

请先阅读下列解题过程,再解答问题.
已知 x2+x-1=0,求x3+2x2+3的值.
解:x3+2x2+3=x3+x2-x+x2+x+3=x(x2+x-1)+x2+x-1+4=0+0+4=4.
如果1+x+x2+x3=0,求x+x2+x3+x4+x5+x6+x7+x8的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

先阅读下列解题过程,然后解答问题(1)、(2).
解方程:|3x|=1.
解:
①当3x≥0时,原方程可化为一元一次方程为3x=1,它的解是x=
1
3

②当3x<0时,原方程可化为一元一次方程为3x=-1,它的解是x=-
1
3

(1)请你模仿上面例题的解法,解方程:|x-1|=2.
(2)探究:求方程2|x-3|-6=0的解.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读下列解题过程,然后解答问题(1)、(2)解方程:|3x|=1
解:①当3x≥0时,原方程可化为一元一次方程为3x=1,它的解是x=
1
3
②当3x<0时,原方程可化为一元一次方程为-3x=1,它的解是x=-
1
3

(1)请你模仿上面例题的解法,解方程:2|x-3|+5=13
(2)探究:当b为何值时,方程|x-2|=b+1 ①无解;②只有一个解;③有两个解.

查看答案和解析>>

同步练习册答案