18£®Èçͼ£¬ÒÑÖªÅ×ÎïÏßy=-x2+bx+cÓëxÖá½»ÓÚA£¨-1£¬0£©¡¢B£¨3£¬0£©Á½µã£¬ÓëyÖá½»ÓÚµãC£¬Å×ÎïÏߵĶԳÆÖáÓëÅ×ÎïÏß½»ÓÚµãP¡¢ÓëÖ±ÏßBCÏཻÓÚµãM£¬Á¬½ÓPB£®
£¨1£©Çó¸ÃÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÔÚ£¨1£©ÖÐλÓÚµÚÒ»ÏóÏÞÄÚµÄÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãD£¬Ê¹µÃ¡÷BCDµÄÃæ»ý×î´ó£¿Èô´æÔÚ£¬Çó³öDµã×ø±ê¼°¡÷BCDÃæ»ýµÄ×î´óÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÔÚ£¨1£©ÖеÄÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãQ£¬Ê¹µÃ¡÷QMBÓë¡÷PMBµÄÃæ»ýÏàµÈ£¿Èô´æÔÚ£¬Ö±½Óд³öÂú×ãÌõ¼þµÄËùÓеãQµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃ´ð°¸£»
£¨2£©¸ù¾ÝÃæ»ýµÄºÍ²î£¬¿ÉµÃ¶þ´Îº¯Êý£¬¸ù¾Ý¶þ´Îº¯ÊýµÄÐÔÖÊ£¬¿ÉµÃ´ð°¸£»
£¨3£©¸ù¾ÝƽÐÐÏßµÄÐÔÖÊ£¬¿ÉµÃPµ½BCÓëQµ½BCµÄ¾àÀëÏàµÈ£¬¿ÉµÃQPµÄ½âÎöʽ£¬¸ù¾Ý½â·½³Ì×飬¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©ÓÉ$\left\{\begin{array}{l}{-1+b+c=0}\\{-9+3b+c=0}\end{array}\right.$µÃ$\left\{\begin{array}{l}{b=2}\\{c=3}\end{array}\right.$£¬
ÔòÅ×ÎïÏߵĽâÎöʽΪy=-x2+2x+3
£¨2£©Èçͼ1£¬
ÉèD£¨t£¬-t2+2t+3£©£¬¹ýµãD×÷DH¡ÍxÖᣬ
ÔòS¡÷BCD=SÌÝÐÎOCDH+S¡÷BDH-S¡÷BOC
=$\frac{1}{2}$£¨-t2+2t+3+3£©t+$\frac{1}{2}$£¨3-t£©£¨-t2+2t+3£©-$\frac{1}{2}$¡Á3¡Á3
=-$\frac{3}{2}$t2+$\frac{9}{2}$t£¬
¡ß-$\frac{3}{2}$£¼0£¬
¡àµ±t=-$\frac{\frac{9}{2}}{2¡Á£¨-\frac{3}{2}£©}$=$\frac{3}{2}$ʱ£¬¡÷BCDÃæ»ýµÄ×î´óÖµÊÇ$\frac{27}{8}$£¬
´ËʱDµã×ø±êÊÇ£¨$\frac{3}{2}$£¬$\frac{15}{4}$£©£»
£¨3£©Èçͼ2£¬
ÔÚ£¨1£©ÖеÄÅ×ÎïÏßÉÏ´æÔÚµãQ£¬Ê¹µÃ¡÷QMBÓë¡÷PMBµÄÃæ»ýÏàµÈ£¬
Éè¹ýµãPÓëBCƽÐеÄÖ±ÏßÓëÅ×ÎïÏߵĽ»µãΪQ£¬
¡ßPµãµÄ×ø±êΪ£¨1£¬4£©£¬Ö±ÏßBCµÄ½âÎöʽΪy=-x+3£¬
¡à¹ýµãPÓëBCƽÐеÄÖ±ÏßΪy=-x+5£¬
ÓÉ$\left\{\begin{array}{l}{y=-x+5}\\{y=-{x}^{2}+2x+3}\end{array}\right.$µÃQµÄ×ø±êΪ£¨2£¬3£©£¬
¡ßPMµÄ½âÎöʽΪx=1£¬Ö±ÏßBCµÄ½âÎöʽΪy=-x+3£¬
¡àMµÄ×ø±êΪ£¨1£¬2£©£¬
ÉèPMÓëxÖá½»ÓÚµãE£¬
¡ßPM=EM=2£¬
¡à¹ýµãEÓëBCƽÐеÄÖ±ÏßΪy=-x+1£¬
ÓÉ$\left\{\begin{array}{l}{y=-x+1}\\{y=-{x}^{2}+2x+3}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=\frac{3+\sqrt{17}}{2}}\\{y=-\frac{1+\sqrt{17}}{2}}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=\frac{3-\sqrt{17}}{2}}\\{y=-\frac{1-\sqrt{17}}{2}}\end{array}\right.$£¬
¡àµãQµÄ×ø±êΪ£¨$\frac{3+\sqrt{17}}{2}$£¬-$\frac{1+\sqrt{17}}{2}$£©£¬£¨$\frac{3-\sqrt{17}}{2}$£¬-$\frac{1-\sqrt{17}}{2}$£©£®
¡àʹµÃ¡÷QMBÓë¡÷PMBµÄÃæ»ýÏàµÈµÄµãQµÄ×ø±êΪ£¨2£¬3£©£¬£¨$\frac{3+\sqrt{17}}{2}$£¬-$\frac{1+\sqrt{17}}{2}$£©£¬£¨$\frac{3-\sqrt{17}}{2}$£¬-$\frac{1-\sqrt{17}}{2}$£©£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬½â£¨1£©µÄ¹Ø¼üÊÇ´ý¶¨ÏµÊý·¨£¬½â£¨2£©µÄ¹Ø¼üÊÇÀûÓÃÃæ»ýµÄºÍ²îµÃ³ö¶þ´Îº¯ÊýµÄ½âÎöʽ£¬ÓÖÀûÓÃÁ˶þ´Îº¯ÊýµÄÐÔÖÊ£»½â£¨3£©µÄ¹Ø¼üÊÇÀûÓÃÆ½ÐÐÏߵļäµÄ¾àÀëÏàµÈµÃ³öƽÐÐBCÇÒÓëBCµÄ¾àÀëµÈÓÚPµ½BCµÄ¾àÀ룬ÓÖÀûÓÃÁ˽ⷽ³Ì×飮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®²»ÂÛa£¬bΪºÎʵÊý£¬a2+b2-2a-4b+7µÄÖµÊÇ£¨¡¡¡¡£©
A£®×ÜÊÇÕýÊýB£®×ÜÊǸºÊý
C£®¿ÉÒÔÊÇÁãD£®¿ÉÒÔÊÇÕýÊýÒ²¿ÉÒÔÊǸºÊý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Ò»´Îº¯Êýy=ax+b£¨a¡Ù0£©µÄͼÏóÓë·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨k¡Ù0£©µÄͼÏó½»ÓÚµÚ¶þ¡¢ËÄÏóÏÞÄÚµÄA¡¢BÁ½µã£¬ÓëyÖá½»ÓÚCµã£¬¹ýµãA×÷AH¡ÍyÖᣬ´¹×ãΪH£¬OH=3£¬tan¡ÏAOH=$\frac{4}{3}$£¬µãBµÄ×ø±êΪ£¨m£¬-2£©£®Çó£º
£¨1£©·´±ÈÀýº¯ÊýºÍÒ»´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©Ð´³öµ±·´±ÈÀýº¯ÊýµÄÖµ´óÓÚÒ»´Îº¯ÊýµÄֵʱxµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Èçͼ£¬ÔÚ?ABCDÖУ¬DB=DC£¬¡ÏCµÄ¶ÈÊý±È¡ÏABDµÄ¶ÈÊý´ó54¡ã£¬AE¡ÍBDÓÚµãE£¬Ôò¡ÏDAEµÄ¶ÈÊýµÈÓÚ12¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ¼×£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬¡ÏBAC=90¡ã£®µãDΪÉäÏßBCÉÏÒ»¶¯µã£¬Á¬½ÓAD£¬ÒÔADΪһ±ßÇÒÔÚADµÄÓÒ²à×÷Õý·½ÐÎADEF£®

½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©µ±µãDÔÚÏß¶ÎBCÉÏʱ£¨ÓëµãB²»Öغϣ©£¬Èçͼ¼×£¬Ïß¶ÎCF¡¢BDÖ®¼äµÄλÖùØÏµÎª´¹Ö±£¬ÊýÁ¿¹ØÏµÎªÏàµÈ£®
£¨2£©µ±µãDÔÚÏß¶ÎBCµÄÑÓ³¤ÏßÉÏʱ£¬ÈçͼÒÒ£¬¢ÙÖеĽáÂÛÊÇ·ñÈÔÈ»³ÉÁ¢£¬ÎªÊ²Ã´£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®·Ö½âÒòʽ£ºa2b-4ab2+4b3=b£¨a-2b£©2 £®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èçͼ£¬Õý·½ÐÎABCDµÄ±ß³¤Îª2cm£¬E¡¢F·Ö±ðÊÇBC¡¢CDµÄÖе㣬Á¬½ÓBF¡¢DE£¬ÔòͼÖÐÒõÓ°²¿·ÖµÄÃæ»ýÊÇ$\frac{8}{3}$cm2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Ä³É½Â·ÆÂÃæÆÂ¶Èi=1£º3£¬ÑØ´Ëɽ·ÏòÉÏǰ½øÁË100Ã×£¬Éý¸ßÁË10$\sqrt{10}$Ã×£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÔÚ?ABCDÖУ¬¶Ô½ÇÏßAC¡¢BDÏཻÓÚµãO£¬ÈôBC=12£¬ÔòACÓëBDµÄÖµ¿ÉÄÜÊÇ£¨¡¡¡¡£©
A£®8ºÍ14B£®10ºÍ14C£®10ºÍ34D£®18ºÍ20

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸