精英家教网 > 初中数学 > 题目详情
问题:如图,在正方形ABCD和正方形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.试探究PG与PC的位置关系及
PG
PC
的值.小聪同学的思路是:延长GP精英家教网交DC于点H,构造全等三角形,经过推理使问题得到解决.
请你参考小聪同学的思路,探究并解决下列问题:
(1)写出上面问题中线段PG与PC的位置关系及
PG
PC
的值;(要有具体过程)
(2)若将条件“正方形ABCD和正方形BEFG”改为“矩形ABCD≌矩形BEFG”其它条件不变,画图试探求线段PG与PC的关系.
分析:(1)利用角边角证明△GFP≌△HDP,证得GP=HP,GF=HD,进而利用正方形的性质可得CH=CG,即可得所求;
(2)由(1)同法可得GP=HP,GF=HD,根据所给矩形全等可得CH=CG,即可得所求.
解答:精英家教网解:(1)如图1,当点A,B,E在同一条直线上时,有结论:PG⊥PC,PG=PC.
延长GP交DC与点H.
∵P是线段DF的中点,
∴FP=DP.
由题意知DC∥AE,
∴∠GFP=∠HDP,
∵∠GPF=∠HPD,
∴△GFP≌△HDP,
∴GP=HP,GF=HD,
∵四边形ABCD、BEFG是正方形,
∴CD=CB,GB=GF.
∴CH=CG,
又∵∠HCG=90°,GP=HP,
∴PG⊥PC,PG=PC;

(2)如图2,当点A,B,E在同一条直线上时,有结论:PG⊥PC,PG=PC
延长GP交DC延长线于点H.精英家教网
∵P是线段DF的中点,
∴FP=DP.
由题意可知DC∥GF,
∴∠GFP=∠HDP,
∵∠GPF=∠HPD,
∴△GFP≌△HDP,
∴GP=HP,GF=HD,
∵矩形ABCD≌矩形BEFG,
∴CD=GB,CB=GF,
∴CH=CG
又∵∠HCG=90°,GP=HP,
∴PG⊥PC,PG=PC.
点评:综合考查了正方形的性质及全等三角形的判定与性质;采用类比的思想做相类似的问题是解决本题的关键;利用证明三角形全等的方法求解是解决本题的基本思路.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

25、请阅读下列材料:
问题:如图,在正方形ABCD和平行四边形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.
探究:当PG与PC的夹角为多少度时,平行四边形BEFG是正方形?
小聪同学的思路是:首先可以说明四边形BEFG是矩形;然后延长GP交DC于点H,构造全等三角形,经过推理可以探索出问题的答案.
请你参考小聪同学的思路,探究并解决这个问题.
(1)求证:四边形BEFG是矩形;
(2)PG与PC的夹角为
90
度时,四边形BEFG是正方形.
理由:

查看答案和解析>>

科目:初中数学 来源:2013届江苏省南京市鼓楼区中考二模数学试卷(带解析) 题型:解答题

阅读:
如图①,已知:正方形ABCD,面积为a,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接AG、BH、CE、DF,求四边形MNPQ的面积.

小明提出了如下的解决办法:如图②,分别将△AMH、△BNE、△CPF、△DQG分割并拼补成一个与正方形ABCD面积相等的新图形.
请你参考小明同学解决问题的方法,利用图形变换解决下列问题:
如图③,在正方形ABCD中,E1、E2、E3、E4分别为AB、BC、CA、DA的中点,P 1、P2, Q1、Q2,M 1、M2,N1、N2分别为AB、BC、CA、DA的三等分点.
(1)在图③中画出一个和正方形ABCD面积相等的新图形,并用阴影表示(保留画图痕迹);
(2)图③中四边形P4Q4M4N4的面积为    

查看答案和解析>>

科目:初中数学 来源:2012-2013学年江苏省南京市鼓楼区中考二模数学试卷(解析版) 题型:解答题

阅读:

如图①,已知:正方形ABCD,面积为a,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接AG、BH、CE、DF,求四边形MNPQ的面积.

小明提出了如下的解决办法:如图②,分别将△AMH、△BNE、△CPF、△DQG分割并拼补成一个与正方形ABCD面积相等的新图形.

请你参考小明同学解决问题的方法,利用图形变换解决下列问题:

如图③,在正方形ABCD中,E1、E2、E3、E4分别为AB、BC、CA、DA的中点,P 1、P2, Q1、Q2,M 1、M2,N1、N2分别为AB、BC、CA、DA的三等分点.

(1)在图③中画出一个和正方形ABCD面积相等的新图形,并用阴影表示(保留画图痕迹);

(2)图③中四边形P4Q4M4N4的面积为    

 

查看答案和解析>>

科目:初中数学 来源:2013届浙江省九年级第二学期期中考试数学试卷(解析版) 题型:解答题

【问题】如图,在正方形ABCD内有一点P,PA=,PB=,PC=1,求∠BPC的度数.

分析根据已知条件比较分散的特点,我们可以通过旋转变换将分散的已知条件集中在一起,于是将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图),然后连结PP′.

解决问题请你通过计算求出图17-2中∠BPC的度数;

【类比研究】如图,若在正六边形ABCDEF内有一点P,且PA=,PB=4,PC=2.

(1)∠BPC的度数为       ;(2)直接写出正六边形ABCDEF的边长为         

 

查看答案和解析>>

同步练习册答案