精英家教网 > 初中数学 > 题目详情

【题目】如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于(
A.110°
B.115°
C.120°
D.125°

【答案】A
【解析】解:∵∠A=27°,∠C=38°, ∴∠AEB=∠A+∠C=65°,
∵∠B=45°,
∴∠DFE=65°+45°=110°,
故选A.
【考点精析】掌握三角形的内角和外角和三角形的外角是解答本题的根本,需要知道三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角;三角形一边与另一边的延长线组成的角,叫三角形的外角;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC经过平移得到的△A′B′C′,△ABC中任意一点P(x1 , y1)平移后的对应点为P′(x1+6,y1+4).

(1)请在图中作出△A′B′C′;
(2)写出点A′、B′、C′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在有理数中,绝对值等于它本身的数有(
A.1个
B.2个
C.3个
D.无穷多个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ABCD,ABC=ADC,DE垂直于对角线AC,垂足是E,连接BE.

(1)求证:四边形ABCD是平行四边形;

(2)若点E是AC的中点,判断BE与AC的位置关系,并说明理由;

(3)若ABE是等边三角形,AD=,求对角线AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A为某旅游景区的最佳观景点,游客可从B处乘坐缆车先到达小观景平台DE观景,然后再由E处继续乘坐缆车到达A处,返程时从A处乘坐升降电梯直接到达C处,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(参考数据:sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AHED于H点.

(1)求证:ADF≌△ABE;

(2)若BE=1,求tanAED的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对非负实数x“四舍五入”到个位的值记为[x].即当n为非负整数时,若n﹣ ≤x<n+ ,则[x]=n.如:[3.4]=3,[3.5]=4,…根据以上材料,解决下列问题:
(1)填空:
①若[x]=3,则x应满足的条件:
②若[3x+1]=3,则x应满足的条件:
(2)求满足[x]= x﹣1的所有非负实数x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某高楼顶部有一信号发射塔,小凡在矩形建筑物ABCD的A、C两点处测得塔顶F的仰角分别为α和β,AD=18m,CD=78m.

(1)用α和β的三角函数表示CE;

(2)当α=30°、β=60°时,求EF(结果精确到1m).

(参考数据:1.414,1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形中,既是轴对称图形,又是中心对称图形的是(  )

A.等腰梯形B.平行四边形C.正三角形D.

查看答案和解析>>

同步练习册答案