分析 (1)利用概率的计算方法解答;
(2)画出树状图,共有6种情况,其中满足一次函数y=kx+b经过第二、三、四象限的结果有2个,求出概率即可.
解答 解:(1)∵共有3张牌,两张为负数,
∴k为负数的概率是$\frac{2}{3}$;
(2)画树状图:
共有6种情况,其中满足一次函数y=kx+b经过第二、三、四象限,
即k<0,b<0的情况有2种,
所以一次函数y=kx+b经过第二、三、四象限的概率为$\frac{2}{6}$=$\frac{1}{3}$.
点评 本题考查了用树状图或列表法、概率公式、一次函数的图象;一次函数y=kx+b的图象与系数的关系;熟练掌握树状图法是解决问题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 3$\sqrt{3}$+3=6$\sqrt{3}$ | B. | $\frac{1}{7}$$\sqrt{7}$=1 | C. | $\sqrt{8}$÷$\sqrt{2}$=4 | D. | $\sqrt{2}$×2$\sqrt{2}$=4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 甲种客车 | 乙种客车 | |
| 载客量/(人/辆) | 45 | 30 |
| 租金/(元/辆) | 400 | 280 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | y=-3(x+4)+1 | B. | y=-(x-4)+1 | C. | y=-3x+5 | D. | y=-3x-3 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 同位角相等,两直线平行 | B. | 两直线平行,同旁内角相等 | ||
| C. | 若a=b,则|a|=|b| | D. | 若ab=0,则a=0或b=0 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}{8y=x+2}\\{9y+5=x}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{8y+2=x}\\{9y=x-5}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{8y=x-2}\\{9y=x+5}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{8y=x+2}\\{9y=x+5}\end{array}\right.$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{25}{3}$ | B. | 4 | C. | $\frac{25}{6}$ | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com