精英家教网 > 初中数学 > 题目详情

如图,等腰Rt△ABC中,AC=BC,以AC为直径作⊙O交AB于D点,E为CD上的一个动点,过E作AE的垂线交BC的延长线于点F,连接AE、BE、EF,下列结论:
①AE=BE;②BE=EF;③∠EAC=∠EFC;④∠AED=AFB.
其中正确的个数是


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
D
分析:由AC是⊙O的直径,根据圆周角定理,可得CD⊥AB,又由等腰Rt△ABC中,AC=BC,根据三线合一的性质,可得CD是线段AB的垂直平分线,即可判定①正确;又由等角的余角相等,证得③∠EAC=∠EFC正确,则可得∠EBC=∠EFC,判定②正确,继而可得△AEF是等腰直角三角形,则可判定④正确.
解答:∵AC是⊙O的直径,
∴∠ADC=90°,
即CD⊥AB,
∵AC=BC,
∴AD=BD,
即CD是线段AB的垂直平分线,
∴AE=BE;故①正确;
∴∠ABE=∠BAE,
∵∠AME=∠FMC,∠AEF=∠ACF=90°,
∴∠EAC=∠EFC,故③正确;
∵∠CAE+∠BAE=∠EBC+∠ABE,
∴∠EAC=∠EBC,
∴∠EBC=∠EFC,
∴BE=EF;故②正确;
∴AE=EF,
∴∠EAF=45°,
∵∠DAC=45°,
∴∠DAE=∠CAF,
∵∠ADC=∠ACF=90°,
∴∠AED=∠AFB.
故④正确.
故选D.
点评:此题考查了圆周角定理、直角三角形的性质以及线段垂直平分线的性质.此题综合性较强,难度较大,解题的关键是注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,等腰Rt△ABC中,CA=CB=8
2
,点P是AB上一动点,设AP=x,操作:在射线AB上截取精英家教网PQ=AP,以PQ为一边向上作正方形PQMN,设正方形PQMN与Rt△ABC重叠部分的面积为S.
(1)求S与x的函数关系式,并写出自变量x的取值范围;
(2)S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等腰Rt△ABC的直角边长为4,以A为圆心,直角边AB为半径作弧BC1,交斜边AC于点C1,C1B1⊥AB于点B1,设弧BC1,C1B1,B1B围成的阴影部分的面积为S1,然后以A为圆心,AB1为半径作弧B1C2,交斜边AC于点C2,C2B2⊥AB于点B2,设弧B1C2,C2B2,B2B1围成的阴影部分的面积为S2,按此规律继续作下去,得到的阴影部分的面积S3=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等腰Rt△ABC中斜边AB=4,O是AB的中点,以O为圆心的半圆分别与两腰相切于点D、E,图中阴影部分的面积是多少?请你把它求出来.(结果用π表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,等腰Rt△OAB的直角边OA的长为1,以AB边上的高OA1为直角边,按逆时针方向作等腰Rt△OA1B1,A1B1与OB相交于点A2.若再以OA2为直角边按逆时针方向作等腰Rt△OA2B2,A2B2与OB1相交于点A3,按此作法进行下去,得到△OA3B3,△OA4B4,…,则△OA6B6的周长是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等腰Rt△ABC,AC=BC,以斜边AB中点O为圆心作⊙O与AC边相切于点D,交AB于点E,连接DE.
(1)求证:BC为⊙O的切线;
(2)求tan∠CDE的值.

查看答案和解析>>

同步练习册答案