精英家教网 > 初中数学 > 题目详情
(动态探索题)如图,一部云梯长AB=25m,斜靠在一面墙上,梯子的底部离墙CB=7m.
(1)这个梯子的顶端距地面有多高CA=?
(2)如果梯子的顶端下滑4m,那么梯子的底部在水平方向向右边滑动了4m吗?为什么?
分析:(1)根据梯子、墙、地面正好构成直角三角形,利用勾股定理即可得出AC的长;
(2)由于梯子的长度不变,根据梯子的顶端下滑4m求出A′C的长度,再根据勾股定理求出B′C的长,进而得出BB′的长.
解答:解:(1)∵梯子、墙、地面正好构成直角三角形,AB=25m,CB=7m,
∴AC=
AB2-BC2
=
252-72
=24(m);

(2)不是.
∵A′C=24-4=20
A′B′=AB=25
∴B′C=
252-202
=15
B′B=15-7=8(m)
∴梯子底部在水平方向向右边滑动了8米,而不是4米.
点评:本题考查的是勾股定理在实际生活中的运用,解答此题的关键是熟知梯子、墙、地面正好构成直角三角形,再根据勾股定理直接进行解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某课题小组对课本的习题进行了如下探索,请逐步思考并解答:

1.(1)(人教版教材习题24.4的第2题)如图1,两个大小一样的传送轮连接着一条传送带,两个传动轮中心的距离是10m,求这条传送带的长­­­_________.

2.(2)改变图形的数量;

如图2、将传动轮增加到3个,每个传动轮的直径是3m,每两个传动轮中心的距离是10m, 求这条传送带的长­­­­­­­­__________.

3.(3)改变动态关系,将静态问题升华为动态问题:

如图3,一个半径为1cm的⊙P沿边长为2πcm的等边三角形△ABC的外沿作无滑动滚动一周,求圆心P经过的路径长?⊙P自转了多少周?

4.(4) 拓展与应用

如图4,一个半径为1cm的⊙P沿半径为3cm的⊙O外沿作无滑动滚动一周,则⊙P自转了多少周?

 

查看答案和解析>>

科目:初中数学 来源: 题型:

某课题小组对课本的习题进行了如下探索,请逐步思考并解答
【小题1】(人教版教材习题24.4的第2题)如图1,两个大小一样的传送轮连接着一条传送带,两个传动轮中心的距离是10m,求这条传送带的长­­­_________.[

【小题2】如图2、将传动轮增加到3个,每个传动轮的直径是3m,每两个传动轮中心的距离是10m, 求这条传送带的长­­­­­­­­__________.

【小题3】改变动态关系,将静态问题升华为动态问题:
如图3,一个半径为1cm的⊙P沿边长为2πcm的等边三角形△ABC的外沿作无滑动滚动一周,求圆心P经过的路径长?⊙P自转了多少周?

【小题4】拓展与应用
如图4,一个半径为1cm的⊙P沿半径为3cm的⊙O外沿作无滑动滚动一周,则⊙P自转了多少周?

查看答案和解析>>

科目:初中数学 来源:2012届浙江省临海市灵江中学九年级2月月考数学卷 题型:解答题

某课题小组对课本的习题进行了如下探索,请逐步思考并解答:
【小题1】(1)(人教版教材习题24.4的第2题)如图1,两个大小一样的传送轮连接着一条传送带,两个传动轮中心的距离是10m,求这条传送带的长­­­_________.
【小题2】(2)改变图形的数量;
如图2、将传动轮增加到3个,每个传动轮的直径是3m,每两个传动轮中心的距离是10m, 求这条传送带的长­­­­­­­­__________.

【小题3】(3)改变动态关系,将静态问题升华为动态问题:
如图3,一个半径为1cm的⊙P沿边长为2πcm的等边三角形△ABC的外沿作无滑动滚动一周,求圆心P经过的路径长?⊙P自转了多少周?
【小题4】(4) 拓展与应用
如图4,一个半径为1cm的⊙P沿半径为3cm的⊙O外沿作无滑动滚动一周,则⊙P自转了多少周?

查看答案和解析>>

科目:初中数学 来源:2011-2012学年浙江省台州市八校九年级第一次联考数学试卷(解析版) 题型:解答题

某课题小组对课本的习题进行了如下探索,请逐步思考并解答

1.(人教版教材习题24.4的第2题)如图1,两个大小一样的传送轮连接着一条传送带,两个传动轮中心的距离是10m,求这条传送带的长­­­_________.[

2.如图2、将传动轮增加到3个,每个传动轮的直径是3m,每两个传动轮中心的距离是10m, 求这条传送带的长­­­­­­ ­­__________.

3.改变动态关系,将静态问题升华为动态问题:

如图3,一个半径为1cm的⊙P沿边长为2πcm的等边三角形△ABC的外沿作无滑动滚动一周,求圆心P经过的路径长?⊙P自转了多少周?

4.拓展与应用

如图4,一个半径为1cm的⊙P沿半径为3cm的⊙O外沿作无滑动滚动一周,则⊙P自转了多少周?

 

查看答案和解析>>

同步练习册答案