| A. | 3个 | B. | 4个 | C. | 5个 | D. | 6个 |
分析 写出各命题,再判断命题的真假即可.
解答 解:命题1,若①,则②;
∵AB∥CD,
∴∠ABC+∠BCD=180°.
∵BE平分∠ABC,CE平分∠BCD,
∴∠1=$\frac{1}{2}$∠ABC,∠2=$\frac{1}{2}$∠BCD,
∴∠1+∠2=$\frac{1}{2}$(∠ABC+∠BCD)=90°,故此命题是真命题;
命题2,若①,则③;
∵AB∥CD,
∴∠1+∠ABE+∠2+∠DCE=180°.
∵∠1+∠2+∠BEC=180°,
∴∠ABE+∠DCE=∠BEC,故此命题是真命题;
命题3,若②,则①;
∵BE平分∠ABC,CE平分∠BCD,
∴∠ABC=2∠1,∠BCD=2∠2.
∵∠1+∠2=90°,
∴∠ABC+∠BCD=2(∠1+∠2)=180°,
∴AB∥CD,故此命题是真命题;
命题4,若②,则③;
∵BE平分∠ABC,CE平分∠BCD,
∴∠ABC=2∠1,∠BCD=2∠2.
∵∠1+∠2=90°,
∴∠ABC+∠BCD=2(∠1+∠2)=180°,
∴∠ABE+∠DCE=90°.
∵∠1+∠2+∠BEC=180°,
∴∠ABE+∠DCE=∠BEC,故此命题是真命题;
命题5,若③,则②;
∵BE平分∠ABC,CE平分∠BCD,
∴∠ABE=$\frac{1}{2}$∠ABC,∠DCE=$\frac{1}{2}$∠BCD,
∵∠ABE+∠DCE=∠BEC,∠1+∠2+∠BEC=180°,
∴∠1+∠2=90°,故此命题是真命题;
命题6,若③,则①.
∵∠ABE+∠DCE=∠BEC,∠BEC+∠1+∠2=180°,
∴∠ABE+∠DCE+∠1+∠2=180°,即∠ABC+∠BCD=180°,
∴AB∥CD,故此命题是真命题.
故选D.
点评 本题考查的是命题与定理,涉及到平行线的判定与性质、角平分线的性质及三角形内角和定理等知识,难度适中.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2017届广东省东莞市堂星晨学校九年级第一次模拟数学试卷(解析版) 题型:判断题
某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.问如何提高售价,才能在半个月内获得最大利润?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com