精英家教网 > 初中数学 > 题目详情

已知在△ABC中,AB=AC,sinB=数学公式,且△ABC的周长为36,则此三角形的面积为


  1. A.
    12
  2. B.
    24
  3. C.
    48
  4. D.
    96
C
分析:设AD=3a,则AB=5a=AC,由勾股定理求出BD=4a,根据等腰三角形的性质得出BD=DC=4a,根据已知得出5a+5a+4a+4a=36,求出a,求出BC和AD,根据三角形的面积公式求出即可.
解答:
过A作AD⊥BC于D,
∵sinB==
∴设AD=3a,则AB=5a=AC,由勾股定理得:BD=4a,
∵AB=AC,AD⊥BC,
∴BD=DC=4a,
∵△ABC的周长为36,
∴5a+5a+4a+4a=36,
a=2,
∴BC=4a+4a=16,AD=3a=6,
∴△ABC的面积是BC×AD=×16×6=48,
故选C.
点评:本题考查了解直角三角形、三角形的面积、勾股定理、等腰三角形的性质等知识点,关键是得出关于a的方程和构造直角三角形,题目具有一定的代表性,是一道比较好的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知在△ABC中,AB=AC=5,BC=8,点G为重心,那么GA=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,已知在△ABC中,∠A=(2x+10)°,∠B=(3x)°,∠ACD是△ABC的一个外角,且∠ACD=(6x-10)°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在△ABC中,∠BAC=90°,AC=4,BC=4
5
,若点D、E、F分别为AB、BC、AC边的中点,点P为AB边上的一个动点(且不与点A、B重合),PQ∥AC,且交BC于点Q,以PQ为一边在点B的异侧作正方形PQMN,设正方形PQMN与矩形ADEF的公共部分的面积为S,BP的长为x,试求S与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在△ABC中,∠BAC为直角,AB=AC,D为AC上一点,CE⊥BD于E.若BD平分∠ABC.
求证:CE=
12
BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B与∠C的平分线交于点P.
(1)当∠A=70°时,求∠BPC的度数;
(2)当∠A=112°时,求∠BPC的度数;
(3)当∠A=α时,求∠BPC的度数.

查看答案和解析>>

同步练习册答案