精英家教网 > 初中数学 > 题目详情

将一副三角板如图拼接:含30°角的三角板(△ABC)的长直角边与含45°角的三角板(△ACD)的斜边恰好重合.已知AB=2数学公式,P是AC上的一个动点,连接DP.
(1)当点P运动到∠ABC的平分线上时,求DP的长;
(2)当点P在运动过程中出现PD=BC时,求此时∠PDA的度数.

解:(1)在Rt△ABC中,AB=2,∠BAC=30°
∴BC=,AC=3.
如图(1),作DF⊥AC
∵Rt△ACD中,AD=CD
∴DF=AF=CF=
∵BP平分∠ABC
∴∠PBC=30°
∴CP=BC•tan30°=1
∴PF=
∴DP==

(2)当P点位置如图(2)所示时,
根据(1)中结论,DF=,∠ADF=45°
又PD=BC=
∴cos∠PDF==
∴∠PDF=30°
∴∠PDA=∠ADF-∠PDF=15°
当P点位置如图(3)所示时,
同(2)可得∠PDF=30°.
∴∠PDA=∠ADF+∠PDF=75°.
分析:(1)作DF⊥AC,在直角△BCP中,求得PC的长,而PF=CF-PC,则PF的长可以求得,然后在直角△DFP中利用勾股定理即可求解;
(2)作DF⊥AC,则P可以在F的左右两边,分两种情况进行讨论,与(1)的解法相同.
点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

取一副三角板按图①拼接,固定三角板ADC,将三角板ABC绕点A依顺时针方向旋转一个大小为α的角(0°<α≤45°)得到△ABC′,如图所示.
试问:
(1)当α为多少度时,能使得图②中AB∥DC;
(2)当旋转至图③位置,此时α又为多少度图③中你能找出哪几对相似三角形,并求其中一对的相似比;
(3)连接BD,当0°<α≤45°时,探寻∠DBC′+∠CAC′+∠BDC值的大小变化情况,并给出你的证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

22、取一副三角板按图1拼接,固定三角板ADC,将三角板ABC绕点A依顺时针方向旋转一个大小为α的角(0°<α≤45°)得到△ABC′,如图所示.
试问:(1)当α为多少度时,能使得图2中AB∥DC;
(2)连接BD,当0°<α≤45°时,探寻∠DBC′+∠CAC′+∠BDC值的大小变化情况,并给出你的证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•怀柔区一模)将一副三角板如图拼接:含30°角的三角板(△ABC)的长直角边与含45°角的三角板(△ACD)的斜边恰好重合.已知AB=2
3
,P是AC上的一个动点,连接DP.
(1)当点P运动到∠ABC的平分线上时,求DP的长;
(2)当点P在运动过程中出现PD=BC时,求此时∠PDA的度数.

查看答案和解析>>

科目:初中数学 来源:2013年北京市怀柔区中考数学一模试卷(解析版) 题型:解答题

将一副三角板如图拼接:含30°角的三角板(△ABC)的长直角边与含45°角的三角板(△ACD)的斜边恰好重合.已知AB=2,P是AC上的一个动点,连接DP.
(1)当点P运动到∠ABC的平分线上时,求DP的长;
(2)当点P在运动过程中出现PD=BC时,求此时∠PDA的度数.

查看答案和解析>>

同步练习册答案