精英家教网 > 初中数学 > 题目详情

定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点.

如图2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.

(1)求证:点D是线段AC的黄金分割点;

(2)求出线段AD的长.

考点:

黄金分割.

分析:

(1)判断△ABC∽△BDC,根据对应边成比例可得出答案.

(2)根据黄金比值即可求出AD的长度.

解答:

解:(1)∵∠A=36°,AB=AC,

∴∠ABC=∠ACB=72°,

∵BD平分∠ABC,

∴∠CBD=∠ABD=36°,∠BDC=72°,

∴AD=BD,BC=BD,

∴△ABC∽△BDC,

=,即=

∴AD2=AC•CD.

∴点D是线段AC的黄金分割点.

(2)∵点D是线段AC的黄金分割点,

∴AD=AC=

点评:

本题考查了黄金分割的知识,解答本题的关键是仔细审题,理解黄金分割的定义,注意掌握黄金比值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田)定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点.
如图2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.
(1)求证:点D是线段AC的黄金分割点;
(2)求出线段AD的长.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(福建莆田卷)数学(解析版) 题型:解答题

定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点.

如图2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.

(1)求证:点D是线段AC的黄金分割点;

(2)求出线段AD的长.

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点.
如图2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.
(1)求证:点D是线段AC的黄金分割点;
(2)求出线段AD的长.

查看答案和解析>>

科目:初中数学 来源:2013年福建省莆田市中考数学试卷(解析版) 题型:解答题

定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点.
如图2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.
(1)求证:点D是线段AC的黄金分割点;
(2)求出线段AD的长.

查看答案和解析>>

同步练习册答案