精英家教网 > 初中数学 > 题目详情

为测量如图所示小华上学路上桥的倾斜度,小华测得图中所示的数据(单位:米),则该坡道倾斜角α的正弦值是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:先根据勾股定理求出斜边,再根据正弦的定义,即所对的直角边与斜边的比值,即可求解.
解答:解:AC=3,BC=4.
AB==5
则sin∠α==
故选A.
点评:本题主要考查了解直角三角形的应用-坡度坡角问题中正弦的定义,正确理解定义是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

小华将一张矩形纸片(如图1)沿对角线CA剪开,得到两张三角形纸片(如图2),其中∠ACB=α,然后将这两张三角形纸片按如图3所示的位置摆放,△EFD纸片的直角顶点D落在△ACB纸片的斜边AC上,直角边DF落在AC所在的直线上.
(1)若ED与BC相交于点G,取AG的中点M,连接MB、MD,当△EFD纸片沿CA方向平移时(如图3),请你观察、测量MB、MD的长度,猜想并写出MB与MD的数量关系,然后证明你的猜想;
(2)在(1)的条件下,求出∠BMD的大小(用含α的式子表示),并说明当α=45°时,△BMD是什么三角形;
(3)在图3的基础上,将△EFD纸片绕点C逆时针旋转一定的角度(旋转角度小于90°),此时△CGD变成△CHD,同样取AH的中点M,连接MB、MD(如图4),请继续探究MB与MD的数量关系和∠BMD的大小,直接写出你的猜想,不需要证明,并说明α为何值时,△BMD为等边三角形.
精英家教网

查看答案和解析>>

科目:初中数学 来源:第25章《图形的变换》中考题集(16):25.2 旋转变换(解析版) 题型:解答题

小华将一张矩形纸片(如图1)沿对角线CA剪开,得到两张三角形纸片(如图2),其中∠ACB=α,然后将这两张三角形纸片按如图3所示的位置摆放,△EFD纸片的直角顶点D落在△ACB纸片的斜边AC上,直角边DF落在AC所在的直线上.
(1)若ED与BC相交于点G,取AG的中点M,连接MB、MD,当△EFD纸片沿CA方向平移时(如图3),请你观察、测量MB、MD的长度,猜想并写出MB与MD的数量关系,然后证明你的猜想;
(2)在(1)的条件下,求出∠BMD的大小(用含α的式子表示),并说明当α=45°时,△BMD是什么三角形;
(3)在图3的基础上,将△EFD纸片绕点C逆时针旋转一定的角度(旋转角度小于90°),此时△CGD变成△CHD,同样取AH的中点M,连接MB、MD(如图4),请继续探究MB与MD的数量关系和∠BMD的大小,直接写出你的猜想,不需要证明,并说明α为何值时,△BMD为等边三角形.

查看答案和解析>>

科目:初中数学 来源:第26章《圆》中考题集(07):26.1 旋转(解析版) 题型:解答题

小华将一张矩形纸片(如图1)沿对角线CA剪开,得到两张三角形纸片(如图2),其中∠ACB=α,然后将这两张三角形纸片按如图3所示的位置摆放,△EFD纸片的直角顶点D落在△ACB纸片的斜边AC上,直角边DF落在AC所在的直线上.
(1)若ED与BC相交于点G,取AG的中点M,连接MB、MD,当△EFD纸片沿CA方向平移时(如图3),请你观察、测量MB、MD的长度,猜想并写出MB与MD的数量关系,然后证明你的猜想;
(2)在(1)的条件下,求出∠BMD的大小(用含α的式子表示),并说明当α=45°时,△BMD是什么三角形;
(3)在图3的基础上,将△EFD纸片绕点C逆时针旋转一定的角度(旋转角度小于90°),此时△CGD变成△CHD,同样取AH的中点M,连接MB、MD(如图4),请继续探究MB与MD的数量关系和∠BMD的大小,直接写出你的猜想,不需要证明,并说明α为何值时,△BMD为等边三角形.

查看答案和解析>>

科目:初中数学 来源:第23章《旋转》中考题集(05):23.1 图形的旋转(解析版) 题型:解答题

小华将一张矩形纸片(如图1)沿对角线CA剪开,得到两张三角形纸片(如图2),其中∠ACB=α,然后将这两张三角形纸片按如图3所示的位置摆放,△EFD纸片的直角顶点D落在△ACB纸片的斜边AC上,直角边DF落在AC所在的直线上.
(1)若ED与BC相交于点G,取AG的中点M,连接MB、MD,当△EFD纸片沿CA方向平移时(如图3),请你观察、测量MB、MD的长度,猜想并写出MB与MD的数量关系,然后证明你的猜想;
(2)在(1)的条件下,求出∠BMD的大小(用含α的式子表示),并说明当α=45°时,△BMD是什么三角形;
(3)在图3的基础上,将△EFD纸片绕点C逆时针旋转一定的角度(旋转角度小于90°),此时△CGD变成△CHD,同样取AH的中点M,连接MB、MD(如图4),请继续探究MB与MD的数量关系和∠BMD的大小,直接写出你的猜想,不需要证明,并说明α为何值时,△BMD为等边三角形.

查看答案和解析>>

科目:初中数学 来源:2009年江苏省宿迁市实验学校中考数学模拟试卷(解析版) 题型:解答题

(2008•仙桃)小华将一张矩形纸片(如图1)沿对角线CA剪开,得到两张三角形纸片(如图2),其中∠ACB=α,然后将这两张三角形纸片按如图3所示的位置摆放,△EFD纸片的直角顶点D落在△ACB纸片的斜边AC上,直角边DF落在AC所在的直线上.
(1)若ED与BC相交于点G,取AG的中点M,连接MB、MD,当△EFD纸片沿CA方向平移时(如图3),请你观察、测量MB、MD的长度,猜想并写出MB与MD的数量关系,然后证明你的猜想;
(2)在(1)的条件下,求出∠BMD的大小(用含α的式子表示),并说明当α=45°时,△BMD是什么三角形;
(3)在图3的基础上,将△EFD纸片绕点C逆时针旋转一定的角度(旋转角度小于90°),此时△CGD变成△CHD,同样取AH的中点M,连接MB、MD(如图4),请继续探究MB与MD的数量关系和∠BMD的大小,直接写出你的猜想,不需要证明,并说明α为何值时,△BMD为等边三角形.

查看答案和解析>>

同步练习册答案