精英家教网 > 初中数学 > 题目详情
(1998•绍兴)已知:梯形ABCD中,AD∥BC,AD=1,BD过梯形的高AE的中点F,且BD⊥DC,设AE=h,BC=a.
(1)用含字母h的代数式表示a;
(2)若a、h是关于x的一元二次方程3x2-3(m+2)x+10m=0的两根,求sin∠DBC的值.
【答案】分析:(1)首先由Rt△AFD≌Rt△EFB,可得BF=FD,BE=1;且EF=;且BD=BF;进而可用h表示出BD,BF的长,再根据Rt△BEF∽Rt△BDC,可得;代入h的关系与BC=a可得答案;
(2)由根与系数的关系可得a+h=m+2,ah=;结合(1)的结论,可得a,h的值,进而可得CD的长,再根据三角函数的定义,可得答案.
解答:解:(1)根据题意,AD∥BC,且AF=EF;
易得Rt△AFD≌Rt△EFB,故BF=FD,BE=1;且EF=
由勾股定理可得:BF=;又可得AD=2AF;
Rt△BEF与Rt△BDC中,有∠BEF=∠BDC=90°,∠B=∠B;
故Rt△BEF∽Rt△BDC,进而可得
化简可得:a=2(1+);即a=2+

(2)若a、h是关于x的一元二次方程3x2-3(m+2)x+10m=0的两根,
则a+h=m+2,ah=
又有a=2+;解可得a=20,h=6;
DC==16;
易得sin∠DBC==
点评:本题考查梯形,菱形、直角三角形的相关知识.解决此类题要懂得用梯形的常用辅助线,把梯形分割为菱形和直角三角形,从而由菱形和直角三角形的性质来求解.
练习册系列答案
相关习题

科目:初中数学 来源:1998年全国中考数学试题汇编《二次函数》(01)(解析版) 题型:解答题

(1998•绍兴)已知:抛物线y=-x2+(m+2)x+m-1与x轴交于A、B两点(点A、B分别在原点O的左、右两侧),以OA、OB为直径作⊙O1和⊙O2
(1)请问:⊙O1和⊙O2,能否为等圆?若能,求出其半径的长度;若不能,说明理由;
(2)设抛物线向上平移4个单位后,⊙O1、⊙O2的面积分别成为S1、S2,且4S2-16S1=5π,求平移后所得抛物线的解析式;
(3)由(2)所得的抛物线与y轴交于点C,⊙O1和⊙O2的一条外公切线MN分别交x轴和y轴于点P、Q(M、N为切点,如图所示),求△CPQ的面积.

查看答案和解析>>

科目:初中数学 来源:1998年浙江省绍兴市中考数学试卷 题型:解答题

(1998•绍兴)已知:抛物线y=-x2+(m+2)x+m-1与x轴交于A、B两点(点A、B分别在原点O的左、右两侧),以OA、OB为直径作⊙O1和⊙O2
(1)请问:⊙O1和⊙O2,能否为等圆?若能,求出其半径的长度;若不能,说明理由;
(2)设抛物线向上平移4个单位后,⊙O1、⊙O2的面积分别成为S1、S2,且4S2-16S1=5π,求平移后所得抛物线的解析式;
(3)由(2)所得的抛物线与y轴交于点C,⊙O1和⊙O2的一条外公切线MN分别交x轴和y轴于点P、Q(M、N为切点,如图所示),求△CPQ的面积.

查看答案和解析>>

科目:初中数学 来源:1998年浙江省绍兴市中考数学试卷 题型:解答题

(1998•绍兴)已知:如图,△ABC中,点D、E分别在AB、AC上,DE∥BC,过A、D、C点的圆交DE的延长线于F.求证:△FCE∽△ABC.

查看答案和解析>>

科目:初中数学 来源:1998年浙江省绍兴市中考数学试卷 题型:选择题

(1998•绍兴)已知直线y=3x+k(k≠0)不过第二象限,双曲线上有两点A(x1,y1)、B(x2,y2),若x2<x1<0,则y1与y2的大小关系是( )

查看答案和解析>>

科目:初中数学 来源:1998年浙江省绍兴市中考数学试卷 题型:选择题

(1998•绍兴)已知:如图,平行四边形ABCD面积为12,AB边上的高DE=3,则DC的长是( )

查看答案和解析>>

同步练习册答案