精英家教网 > 初中数学 > 题目详情
17.如图,△ABC中,AB=AC,∠A=40°,延长AC到D,使CD=BC,点P是△ABD的内心,则∠BPC=(  )
A.105°B.110°C.130°D.145°

分析 连接PD,如图,连接AP并延长交BC于E,先利用等腰三角形的性质和三角形内角和计算出∠ABC=∠ACB=70°,再利用等腰三角形性质和三角形外角性质可计算出∠CBD=$\frac{1}{2}$∠ACB=35°,则∠ABD=105°,利用三角形内心的性质得AP平分∠BAC,BP平分∠ABD,根据等腰三角形性质可判定AE垂直平分BC,利用角平分线的定义计算出∠PBD=$\frac{1}{2}$∠ABD=52.5°,则∠PBC=22.5°,然后利用PB=PC得到∠PBC=∠PCB=22.5°,最后根据三角形内角和计算∠BPC的度数.

解答 解:连接PD,如图,连接AP并延长交BC于E,
∵AB=AC,
∴∠ABC=∠ACB=$\frac{1}{2}$(180°-∠A)=$\frac{1}{2}$(180°-40°)=70°,
∵CD=CB,
∴∠D=∠CBD,
而∠ACB=∠D+∠CBD,
∴∠CBD=$\frac{1}{2}$∠ACB=35°,
∴∠ABD=35°+70°=105°,
∵点P是△ABD的内心,
∴AP平分∠BAC,BP平分∠ABD,
∴AE垂直平分BC,∠PBD=$\frac{1}{2}$∠ABD=52.5°,
∴∠PBC=52.5°-35°=22.5°,
∵PE垂直平分BC,
∴PB=PC,
∴∠PBC=∠PCB=22.5°,
∴∠BPC=180°-22.5°-22.5°=145°.
故选D.

点评 本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等腰三角形的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.如图,抛物线y=ax2+bx+3与x轴交于A(-1,0)、B(3,0)两点,与y轴交于C点,抛物线的对称轴l与x轴交于M点.
(1)求抛物线的函数解析式;
(2)设点P是直线l上的一个动点,当PA+PC的值最小时,求PA+PC长;
(3)在直线l上是否存在点Q,使以M、O、Q为顶点的三角形与△AOC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知:如图,C、D是直线AB上两点,∠1+∠2=180°,DE平分∠CDF,EF∥AB.
(1)求证:CE∥DF;
(2)若∠DCE=126°,求∠DEF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.从今年起,某市生物和地理会考实施改革,考试结果以等级形式呈现,分A、B、C、D四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图. 

(1)这次抽样调查共抽取了50名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为36°; 
(2)将条形统计图补充完整;
(3)该校八年级一班生物第一兴趣小组有甲、乙、丙、丁四人,分别是A、B、C、D四个等级,计划从四人中随机抽出两人去参加生物竞赛,请用画树状图或列表的方法,求出刚好抽到甲、乙两名学生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.在四边形ABCD中,AB=AD,CB=CD,∠BCD=120°,∠BAD=60°,动点P在直线AC上,若以A、B、C、D、P中的4个点为顶点能构成面积为2$\sqrt{3}$的菱形,则线段AP的长为2或2$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.将不等式x-1>0的解集表示在数轴上,下列表示正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.列方程(组)解应用题
某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,但每件进价比第一批衬衫的每件进价少了10元,且进货量是第一次进货量的一半,求第一批购进这种衬衫每件的进价是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在菱形ABCD中,CE垂直对角线AC于点C,AB的延长线交CE于点E.
(1)求证:CD=BE;
(2)如果∠E=60°,CE=m,请写出求菱形ABCD面积的思路.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.(1)如图(1)所示,已知在△ABC中,O为∠ABC和∠ACB的平分线BO,CO的交点.试猜想∠BOC和∠A的关系,并说明理由.
(2)如图(2)所示,若O为∠ABC的平分线BO和∠ACE的平分线CO的交点,则∠BOC与∠A的关系又该怎样?为什么?

查看答案和解析>>

同步练习册答案