精英家教网 > 初中数学 > 题目详情

在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=2,以斜边AB为一边,作等边△ABD,则线段CD的长为________.

2或
分析:画出符合条件的两种情况,求出AB和等边三角形边长,即可求出答案.
解答:
分为两种情况:①如图1,∵∠ACB=90°,∠CAB=30°,BC=2,
∴AB=2BC=4,
即等边三角形ABD的边长BD=4,
∴DC=4-2=2;
②如图2,
∵AB=4,△ABD是等边三角形,
∴AD=AB=4,∠DAB=60°,
∵∠CAB=30°,
∴∠DAC=90°,
在Rt△CAB中,AC==2
在Rt△CAD中,由勾股定理得:CD==2
故答案为:2或2
点评:本题考查了勾股定理,等边三角形性质,含30度角的直角三角形等知识点的应用,关键是求出符合条件的所有情况.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案