精英家教网 > 初中数学 > 题目详情

已知:△ABC中,∠BAC=135°,D、E在BC上(D在B、E之间),且AD=AE,∠DAE=90°,求证:
(1)DE2=2BD•CE,
(2)AB2:AC2=BD:CE.

证明:
(1)∵∠BAC=135°,∴∠B+∠C=45°,
∵AD=AE,∠DAE=90°,
∴∠B+∠BAD=45°,
∴∠BAD=∠C,又∠ADB=∠AEC=135°,
∴△ABD∽△CAE,
=,即AD•AE=BD•CE,即AD2=BD•CE,
又DE2=AD2+AE2=2AD2
∴DE2=2BD•CE.

(2)由(1)得==
===
分析:可先作出简单的图形,结合图形进行分析;由题中条件可得△ABD∽△CAE,得出AD2=BD•CE,进而再由线段及垂直关系,第一问可求解,第二问在第一问的基础上替换一下即可.
点评:本题主要考查了相似三角形的判定及性质问题,应熟练掌握并运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知Rt△ABC中,∠ACB=90°,BC=5,tan∠A=
3
4
,现将△ABC绕着点C逆时针旋转α(45°<α<135°)得到△DCE,设直线DE与直线AB相交于点P,连接CP.
精英家教网
(1)当CD⊥AB时(如图1),求证:PC平分∠EPA;
(2)当点P在边AB上时(如图2),求证:PE+PB=6;
(3)在△ABC旋转过程中,连接BE,当△BCE的面积为
25
4
3
时,求∠BPE的度数及PB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知在△ABC中,AB=AC,∠BAD=β,且AD=AE,求∠EDC.(用β表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

8、如图,已知在△ABC中,AD垂直平分BC,AC=EC,点B、D、C、E在同一直线上,则下列结论:①AB=AC;②∠CAE=∠E;③AB+BD=DE;④∠BAC=∠ACB.正确的个数有(  )个.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在△ABC中,有一个角为60°,S△ABC=10
3
,周长为20,则三边长分别为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,点D、E分别是AB、AC上的点,以AE为直径的⊙O与过B点的⊙P精英家教网外切于点D,若AC和BC边的长是关于x的方程x2-(AB+4)x+4AB+8=0的两根,且25BC•sinA=9AB,
(1)求△ABC三边的长;
(2)求证:BC是⊙P的切线;
(3)若⊙O的半径为3,求⊙P的半径.

查看答案和解析>>

同步练习册答案