精英家教网 > 初中数学 > 题目详情
42、写出一个图象与x轴交点坐标为(3,0)的一次函数
y=x-3(答案不唯一)
分析:设出所求的一次函数解析式,其中k为已知值,进而把(3,0)代入求得常数即可.
解答:解:设一次函数解析式为y=x+b,
∵与x轴交点坐标为(3,0)
∴3+b=0,
解得b=-3,
故所求的一次函数解析式为y=x-3,
故答案为y=x-3(答案不唯一).
点评:考查一次函数图象上的点的坐标的特点;设一次函数的比例系数为已知值是解决本题的突破点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知二次函数y=-x2+(k+1)x-k的图象经过一次函数y=-x+4的图象与x轴的交点A.精英家教网(如图)
(1)求二次函数的解析式;
(2)求一次函数与二次函数图象的另一个交点B的坐标;
(3)若二次函数图象与y轴交于点D,平行于y轴的直线l将四边形ABCD的面积分成1:3的两部分,则直线l截四边形ABCD所得的线段的长是多少?(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=-x2+bx+c的图象与x轴交于B(-2,0),C(4,0)两点,点E是对称轴l与x的精英家教网交点.
(1)求二次函数的解析表达式;
(2)T为对称轴l上一动点,以点B为圆心,BT为半径作⊙B,写出直线CT与⊙B相切时,T点的坐标;
(3)若在x轴上方的P点为抛物线上的动点,且∠BPC为锐角,直接写出PE的取值范围;
(4)对于(1)中得到的关系式,若x为整数,在使得y为完全平方数的所有x的值中,设x的最大值为m,最小值为n,次小值为s,求m、n、s的值.(注:一个数如果是另一个整数的完全平方,那么就称这个数为完全平方数.)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,其中点B在x轴精英家教网的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且A点坐标为(-6,0).
(1)求此二次函数的表达式;
(2)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(3)在(2)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且A点坐标为(-6,0).
(1)求此二次函数的表达式;
(2)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(3)在(2)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数y=ax2+bx-8(a≠0)的图象与x轴交于点A(-2,0),B(4,0)两点,与y轴交于点C,T为抛物线的顶点.
(1)在x轴下方的抛物线上有一点D,以A,C,D,B四点为顶点的四边形ACDB是等腰梯形,请直接写出D点的坐标;
(2)过点B作两条互相垂直的直线l1,l2,在抛物线的对称轴上是否存在点P,使得以点P为圆心的圆过原点,且与直线l1,l2都相切?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)直线CT交x轴于点E,点F(m,n)是射线ET上的一个动点,将抛物线沿其对称轴向下平移2个单位长度,若平移后的抛物线与线段EF只有一个公共点,试分别计算实数m,n的取值范围.

查看答案和解析>>

同步练习册答案