精英家教网 > 初中数学 > 题目详情
(2012•威海)如图,在?ABCD中,AE,CF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是(  )
分析:根据平行四边形性质推出∠B=∠D,∠DAB=∠DCB,AB=CD,AD=BC,求出∠BAE=∠DCF,证△ABE≌△CDF,推出AE=CF,BE=DF,求出AF=CE,得出四边形AECF是平行四边形,再根据菱形的判定判断即可.
解答:解:∵四边形ABCD是平行四边形,
∴∠B=∠D,∠DAB=∠DCB,AB=CD,AD=BC,
∵AE,CF分别是∠BAD和∠BCD的平分线,
∴∠DCF=
1
2
∠DCB,∠BAE=
1
2
∠BAD,
∴∠BAE=∠DCF,
∵在△ABE和△CDF中
∠D=∠B
AB=CD
∠DCF=∠BAE

∴△ABE≌△CDF,
∴AE=CF,BE=DF,
∵AD=BC,
∴AF=CE,
∴四边形AECF是平行四边形,
A、∵四边形AECF是平行四边形,AE=AF,
∴平行四边形AECF是菱形,故本选项正确;
B、∵EF⊥AC,四边形AECF是平行四边形,
∴平行四边形AECF是菱形,故本选项正确;
C、根据∠B=60°和平行四边形AECF不能推出四边形是菱形,故本选项错误;
D、∵四边形AECF是平行四边形,
∴AF∥BC,
∴∠FAC=∠ACE,
∵AC平分∠EAF,
∴∠FAC=∠EAC,
∴∠EAC=∠ECA,
∴AE=EC,
∵四边形AECF是平行四边形,
∴四边形AECF是菱形,故本选项正确;
故选C.
点评:本题考查了平行四边形的性质和判定、菱形的判定、全等三角形的性质和判定、平行线的性质等知识点,主要考查学生的推理能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•威海)如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=20°,则∠2的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•威海)如图,在平面直角坐标系中,线段OA1=1,OA1与x轴的夹角为30°,线段A1A2=1,A2A1⊥OA1,垂足为A1;线段A2A3=1,A3A2⊥A1A2,垂足为A2;线段A3A4=1,A4A3⊥A2A3,垂足为A3;…按此规律,点A2012的坐标为
(503
3
-503,503
3
+503)
(503
3
-503,503
3
+503)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•威海)如图,直线l1,l2交于点A,观察图象,点A的坐标可以看作方程组
y=-x+2
y=2x-1
y=-x+2
y=2x-1
的解.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•威海)如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E.K为
AC
上一动点,AK,DC的延长线相交于点F,连接CK,KD.
(1)求证:∠AKD=∠CKF;
(2)若AB=10,CD=6,求tan∠CKF的值.

查看答案和解析>>

同步练习册答案