精英家教网 > 初中数学 > 题目详情

如图,已知:△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线交AB于E,交BC于F,DG为AC的垂直平分线,交AC于G,交BC于D,若BC=15cm,则DF长为________.

5
分析:连接AF、AD,先由△ABC中,AB=AC,∠BAC=120°求出∠B及∠C的度数,再由线段垂直平分线的性质得出BF=AF,AD=CD,∠B=∠BAF,∠C=∠CAD,由三角形外角的性质求出∠AFD与∠ADF的度数,判断出△AFD是等边三角形,由等边三角形的性质可得到AF=FD=AD,故AF=FD=AD=BF=CD,即3DF=BC,由BC=15cm即可求出DF的长.
解答:解:连接AF、AD,
∵AB=AC,∠BAC=120°,
∴∠B=∠C===30°,
∵EF、DG分别为线段AB、AC的垂直平分线,
∴BF=AF,AD=CD,∠B=∠BAF=30°,∠C=∠CAD=30°,
∵∠AFD与∠ADF分别是△ABF与△ACD的外角,
∴∠AFD=∠B+∠BAF=30°+30°=60°,∠ADF=∠C+∠CAD=30°+30°=60°,
∴△ADF是等边三角形,
∴AF=FD=AD,
∵BF=AF,AD=CD,BC=15cm,
∴AF=FD=AD=BF=CD,
∴3DF=BC=15,
∴DF=5cm.
点评:本题考查的是线段垂直平分线的性质及三角形内角与外角的性质,熟知线段的垂直平分线上的点到线段的两个端点的距离相等是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从点A开始,沿AB边向点B以1cm/S的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,(其中一点到达终点,另一点也停止运动),设经过t秒.
(1)如果P、Q分别从A、B两点同时出发,那么几秒后,△PBQ的面积等于△ABC的面积的
13

(2)在(1)中,△PQB的面积能否等于10cm2?请说明理由.
(3)若P、Q分别从A、B两点出发,那么几秒后,PQ的长度等于6cm?
(4)P、Q在移动的过程中,是否存在某一时刻t,使得PQ∥AC?若存在求出t的值,若不存在请说明理由.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:△ABC中,∠1=∠2,且AE=AD,BE和CD相交于F.求证:BF=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:△ABC为等边三角形,D、F分别为射线BC、射线AB边上的点,BD=AF,以AD为边作等边△ADE.
(1)如图①所示,当点D在线段BC上时:
①试说明:△ACD≌△CBF;②判断四边形CDEF的形状,并说明理由;
(2)如图②所示,当点D在BC的延长线上时,判断四边形CDEF的形状,并说明理由.
(3)当点D在射线BC上移动到何处时,∠DEF=30°,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,AB=AC,∠A=36°,BD为∠ABC的平分线,则
AD
AC
的值等于
5
-1
2
5
-1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,D是边BC的中点,点E在边BA的延长线上,AE=AB,
BA
=
a
BC
=
b
,那么
DE
=
2
a
-
1
2
b
2
a
-
1
2
b

查看答案和解析>>

同步练习册答案