精英家教网 > 初中数学 > 题目详情
16.抛物线y=$\frac{3}{2}$x2+2的对称轴是y轴,顶点的坐标是(0,2),在对称轴的右侧,y随x的增大而增大.

分析 根据二次函数的顶点式,即可得出其顶点坐标和对称轴;结合抛物线开口方向进而得到在对称轴的右侧函数y随x的增大而增大.

解答 解:∵抛物线y=$\frac{3}{2}$x2+2,
∴对称轴为y轴,顶点坐标为(0,2);
∵a=$\frac{3}{2}$>0,
∴抛物线的开口向上,
∴在对称轴的右侧,函数y随x的增大而增大.
故答案为:y轴,(0,2),增大.

点评 本题主要考查了二次函数的性质,解答本题的关键是把抛物线的一般式写成顶点坐标式,此题难度一般.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

20.一次函数y=kx+b(k,b是常数,k≠0)图象如图所示,则不等式kx+b>0的解集是x>-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,AB是⊙O的直径,点C、D在⊙O上,且AC平分∠BAD,点E为AB的延长线上一点,且∠ECB=∠CAD.
(1)①填空:∠ACB=90°,理由是直径所对的圆周角是直角;
②求证:CE与⊙O相切;
(2)若AB=6,CE=4,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.已知关于x的方程$\frac{2x+m}{x-2}$=3的解是正数,则m的取值范围是m>-6且m≠-4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:
(1)$\frac{1}{2}$$\sqrt{17}$-2$\sqrt{17}$;
(2)$\sqrt{\frac{1}{2}}$+$\sqrt{\frac{1}{8}}$;
(3)3$\sqrt{\frac{1}{3}}$+$\sqrt{12}$;
(4)$\sqrt{48}$+2$\sqrt{3}$-$\sqrt{75}$;
(5)($\sqrt{24}$-$\sqrt{6}$)÷2$\sqrt{3}$;
(6)$\frac{\sqrt{12}+\sqrt{27}}{\sqrt{3}}$;
(7)$\sqrt{3}$×$\sqrt{6}$$-\sqrt{20}$÷$\sqrt{5}$;
(8)$\sqrt{24}$-$\sqrt{18}$×$\sqrt{\frac{1}{3}}$$-\sqrt{\frac{1}{9}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图1,图2,在△ABC中,∠ACB=90°,AC=BC,AB=8,点D时AB边长的中点,点E时AB边上一动点(点E不与点A、B重合),连接CE,过点B作BF⊥CE于F,交射线CD于点G.
(1)当点E在点D的左侧运动时,(图1),求证:△ACE≌△CBG;
(2)当点E在点D的右侧运动时(图2),(1)中的结论是否成立?请说明理由;
(3)当点E运动到何处时,BG=5,试求出此时AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R的扇形草坪(图中阴影部分).
(1)分别求图①②③中草坪的面积;
(2)如果多边形的边数为n,其余条件都不变,那么,你认为草坪的面积为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,PA,PB分别切⊙O于点A,B,作射线PO,分别交⊙O于点E,C,交AB于点D,∠C=30°,PO=12.
(1)求点P到⊙O的切线PA的长;
(2)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,点A、点D在⊙O上,0A=1,$\widehat{AD}$=$\frac{π}{2}$,点B在射线AD上,若BC∥OA,判断直线CD与⊙O的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案