精英家教网 > 初中数学 > 题目详情
(1998•台州)已知二次函数y=x2+ax+a-2.
(1)求证:不论a为何实数,此函数的图象与x轴总有两个交点;
(2)当两个交点间的距离为时,求a的值;
(3)在(2)的条件下求出函数的最大值或最小值.
【答案】分析:(1)令函数值y=0,可得出一个关于x的一元二次方程,证△>0即可.
(2)可设出两个交点的横坐标,然后根据韦达定理表示出两交点的距离,即可求出a的值.
(3)可根据(2)得出的a的值,求出抛物线的解析式,用配方法或公式法即可求出函数的最大或最小值(本题抛物线开口向上,因此只有最小值).
解答:解:(1)令y=0,
则有x2+ax+a-2=0①,
△=a2-4a+8=(a-2)2+4>0,
因此不论a的值为多少,抛物线总与x轴有两个不同的交点.

(2)设两交点的坐标为(x1,0)(x2,0)(x1<x2);
根据方程①可得
x1+x2=-a,x1x2=a-2
x2-x1===
∴a2-4a+8=29,即a2-4a-21=0
∴a=-3或a=7.

(3)当a=-3时,y=x2-3x-5=(x-2-
∴函数的最小值为-
当a=7时,y=x2+7x+5=(x+2-
∴函数的最小值为-
∴函数的最小值为-
点评:本题考查了二次函数与一元二次方程的关系以及一元二次方程根与系数的关系等知识.
练习册系列答案
相关习题

科目:初中数学 来源:1998年全国中考数学试题汇编《尺规作图》(01)(解析版) 题型:解答题

(1998•台州)已知直线l与l外的一点A,画一个以点A为圆心的圆,使它与直线l相切(画图工具不限,保留画图痕迹)

查看答案和解析>>

科目:初中数学 来源:1998年全国中考数学试题汇编《圆》(03)(解析版) 题型:解答题

(1998•台州)如图,已知C是以AB为直径的半圆上的一点,AB=10,CD⊥AB于D点,以AD、DB为直径画两个半圆,EF是这两个半圆的外公切线,E、F为切点.
(1)求证:CD=EF;
(2)求证:四边形EDFC是矩形;
(3)若DB=|m|,则m是使关于x的方程x2+2(m-1)x+m2+3=0的两个实根的平方和为22的实数值,求矩形EDFC的面积.

查看答案和解析>>

科目:初中数学 来源:1998年全国中考数学试题汇编《四边形》(01)(解析版) 题型:解答题

(1998•台州)如图,已知C是以AB为直径的半圆上的一点,AB=10,CD⊥AB于D点,以AD、DB为直径画两个半圆,EF是这两个半圆的外公切线,E、F为切点.
(1)求证:CD=EF;
(2)求证:四边形EDFC是矩形;
(3)若DB=|m|,则m是使关于x的方程x2+2(m-1)x+m2+3=0的两个实根的平方和为22的实数值,求矩形EDFC的面积.

查看答案和解析>>

科目:初中数学 来源:1998年全国中考数学试题汇编《一元二次方程》(02)(解析版) 题型:解答题

(1998•台州)如图,已知C是以AB为直径的半圆上的一点,AB=10,CD⊥AB于D点,以AD、DB为直径画两个半圆,EF是这两个半圆的外公切线,E、F为切点.
(1)求证:CD=EF;
(2)求证:四边形EDFC是矩形;
(3)若DB=|m|,则m是使关于x的方程x2+2(m-1)x+m2+3=0的两个实根的平方和为22的实数值,求矩形EDFC的面积.

查看答案和解析>>

同步练习册答案