分析 通过直角三角形全等的判定定理HL证得Rt△BDC≌Rt△CEB,然后由全等三角形的对应角相等推知∠BCE=∠CBD;最后根据等角对等边即可证得AB=AC.
解答 证明:∵BE⊥AC于E,CD⊥AB于D,
∴∠BDC=∠CEB=90°.
在Rt△BDC与Rt△CEB中,
$\left\{\begin{array}{l}{BD=CE}\\{BC=BC}\end{array}\right.$,
∴Rt△BDC≌Rt△CEB(HL),
∴∠CBD=∠BCE(全等三角形的对应角相等),
∴AB=AC.
点评 本题考查了等腰三角形的判定、全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角是解答此题的关键.
科目:初中数学 来源: 题型:选择题
| A. | AC和BD互相垂直平分 | B. | AB=AD且AC⊥BD | ||
| C. | ∠A=∠B且AC=BD | D. | AB=AD且AC=BD |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 86米 | B. | 87米 | C. | 136米 | D. | 137米 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com