精英家教网 > 初中数学 > 题目详情

某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件

(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;

(2)求销售单价为多少元时,该文具每天的销售利润最大;

(3)商场的营销部结合上述情况,提出了A、B两种营销方案

方案A:该文具的销售单价高于进价且不超过30元;

方案B:每天销售量不少于10件,且每件文具的利润至少为25元

请比较哪种方案的最大利润更高,并说明理由

 

【答案】

解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000。

(2)∵w=-10x2+700x-10000=-10(x-35)2+2250

∴当x=35时,w有最大值2250,

即销售单价为35元时,该文具每天的销售利润最大。

(3)甲方案利润高。理由如下:

甲方案中:20<x≤30,函数w=-10(x-35)2+2250随x的增大而增大,

∴当x=30时,w有最大值,此时,最大值为2000元。

乙方案中:,解得x的取值范围为:45≤x≤49。

∵45≤x≤49时,函数w=-10(x-35)2+2250随x的增大而减小,

∴当x=45时,w有最大值,此时,最大值为1250元。

∵2000>1250,∴甲方案利润更高

【解析】

试题分析:(1)根据利润=(单价-进价)×销售量,列出函数关系式即可。

(2)根据(1)式列出的函数关系式,运用配方法求最大值。

(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较。

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•青岛)某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.
(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
(3)商场的营销部结合上述情况,提出了A、B两种营销方案:
方案A:该文具的销售单价高于进价且不超过30元;
方案B:每天销售量不少于10件,且每件文具的利润至少为25元
请比较哪种方案的最大利润更高,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.
(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
(3)商场的营销部结合上述情况,提出了A、B两种营销方案:
方案A:该文具的销售单价高于进价且不超过30元;
方案B:每天销售量不少于10件,且每件文具的利润至少为25元
请比较哪种方案的最大利润更高,并说明理由.

查看答案和解析>>

科目:初中数学 来源:青岛 题型:解答题

某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.
(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
(3)商场的营销部结合上述情况,提出了A、B两种营销方案:
方案A:该文具的销售单价高于进价且不超过30元;
方案B:每天销售量不少于10件,且每件文具的利润至少为25元
请比较哪种方案的最大利润更高,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年山东省青岛市中考数学试卷(解析版) 题型:填空题

某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.
(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
(3)商场的营销部结合上述情况,提出了A、B两种营销方案:
方案A:该文具的销售单价高于进价且不超过30元;
方案B:每天销售量不少于10件,且每件文具的利润至少为25元
请比较哪种方案的最大利润更高,并说明理由.

查看答案和解析>>

同步练习册答案