精英家教网 > 初中数学 > 题目详情
(2012•辽阳)如图,正方形A1B1B2C1,A2B2B3C2,A3B3B4C3,…,AnBnBn+1Cn,按如图所示放置,使点A1、A2、A3、A4、…、An在射线OA上,点B1、B2、B3、B4、…、Bn在射线OB上.若∠AOB=45°,OB1=1,图中阴影部分三角形的面积由小到大依次记作S1,S2,S3,…,Sn,则Sn=
22n-3
22n-3
分析:根据正方形性质和等腰直角三角形性质得出OB1=A1B1=1,求出A1C1=A2C1=1,A2C2=A3C2=2,A3C3=A4C3=4,根据三角形的面积公式求出S1=
1
2
×20×20,S2=
1
2
×21×21,S3=
1
2
×22×22,推出Sn=
1
2
×2n-1×2n-1,求出即可.
解答:解:∵四边形A1B1B2C1是正方形,∠O=45°,
∴∠OA1B1=45°,
∴OB1=A1B1=1,
同理A1C1=A2C1=1,
即A2C2=1+1=2=A3C2
A3C3=A4C3=2+2=4,
…,
∴S1=
1
2
×1×1=
1
2
×20×20
S2=
1
2
×2×2=
1
2
×21×21
S3=
1
2
×4×4=
1
2
×22×22
S4=
1
2
×8×8=
1
2
×23×23

∴Sn=
1
2
×2n-1×2n-1=
22n-2
2
=22n-3
故答案为:22n-3
点评:本题考查了正方形性质,等腰直角三角形性质,三角形的面积的应用,解此题的关键是能根据求出的结果得出规律,题目比较好,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•辽阳)如图,在△ABC中,AB=AC,AB+BC=8.将△ABC折叠,使得点A落在点B处,折痕DF分别与AB、AC交于点D、F,连接BF,则△BCF的周长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•辽阳)如图,反比例函数y=
k
x
(k≠0)与一次函数y=kx+k(k≠0)在同一平面直角坐标系内的图象可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•辽阳)如图,∠PAC=30°,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O交射线AP于E、F两点,则线段EF的长是
6
6
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•辽阳)如图所示,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.
(1)画出位似中心点O;
(2)直接写出△ABC与△A′B′C′的位似比;
(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•辽阳)如图,抛物线y=ax2+bx-3交y轴于点C,直线l为抛物线的对称轴,点P在第三象限且为抛物线的顶点.P到x轴的距离为
10
3
,到y轴的距离为1.点C关于直线l的对称点为A,连接AC交直线l于B.
(1)求抛物线的表达式;
(2)直线y=
3
4
x+m与抛物线在第一象限内交于点D,与y轴交于点F,连接BD交y轴于点E,且DE:BE=4:1.求直线y=
3
4
x+m的表达式;
(3)若N为平面直角坐标系内的点,在直线y=
3
4
x+m上是否存在点M,使得以点O、F、M、N为顶点的四边形是菱形?若存在,直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案