精英家教网 > 初中数学 > 题目详情

计算:数学公式-22+数学公式+2sin60°.

解:原式=2-4+2-+2×=0.
分析:根据实数的混合运算顺序,先算较高级运算,再算较低级运算,有括号先算括号.
点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握乘方、立方根、绝对值等考点的运算.注意,=2,|-2|=2-,sin60°=
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

为了求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,则2S=2+22+23+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+5+52+53+…+52009的值是(  )
A、52009-1
B、52010-1
C、
52009-1
4
D、
52010-1
4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•平南县二模)求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S-S=22013-1.仿照以上推理,计算出1+5+52+53+…+52012=
52013-1
4
52013-1
4

查看答案和解析>>

科目:初中数学 来源: 题型:

为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S-S=22013-1,所以1+22+23+…+22012=22013-1.仿照以上方法计算1+5+52+53+…+52012的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

为求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,则2S=2+22+23+24+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+5+52+53+…+52013的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

为了求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,则2S=2+22+23+24+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+3+32+33+…+32010的值是
S=
32011-1
2
S=
32011-1
2

查看答案和解析>>

同步练习册答案