精英家教网 > 初中数学 > 题目详情
如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是(  )
A.50B.62C.65D.68
A

试题分析:由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;
同理证得△BGC≌△DHC,GC=DH,CH=BG.
故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.
解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH?∠EAB=∠EFA=∠BGA=90°,
∠EAF+∠BAG=90°,∠ABG+∠BAG=90°?∠EAF=∠ABG,
∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG?△EFA≌△ABG
∴AF=BG,AG=EF.
同理证得△BGC≌△DHC得GC=DH,CH=BG.
故FH=FA+AG+GC+CH=3+6+4+3=16
故S=(6+4)×16﹣3×4﹣6×3=50.
故选A.

点评:本题考查的是全等三角形的判定的相关知识.作辅助线是本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,直线AC∥BD,连结AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连结PA、PB,构成∠PAC、∠APB、∠PBD三个角. (提示: 有公共端点的两条重合的射线所组成的角是0°)

(1)当动点P落在第①部分时,有∠APB=∠PAC+∠PBD,请说明理由;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?若不成立,试写出∠PAC、∠APB、∠PBD三个角的关系(无需说明理由);
(3)当动点P在第③部分时,探究∠PAC、∠APB、∠PBD之间的关系,写出你发现的一个结论并加以说明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在△ABC中,AD为BC边上的中线,若AB=6,AC=4,设AD=x,则x的取值范围是(   )
A.0<x<10B.2<x<8 C.1<x<5 D.2<x<10

 

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为N,P,Q,M的四个图形,试按照“哪个正方形剪开后与哪个图形”的对应关系填空:A与  对应;B与  对应;C与  对应;D与  对应.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列条件中能判定△ABC≌△DEF的是(  )
A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠B=∠E,∠C=∠F
C.AC=DF,∠B=∠F,AB=DED.∠B=∠E,∠C=∠F,AC=DF

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,把一快含有450角的直角三角板的两个顶点在放在直尺的对边上.若∠1=20°,那么∠2的度数是(  )
A.30°B.25°C.20°D.15°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在△ABC中,∠B=∠C.求证:AB=AC。小红和小聪在解答此题时,他们对各自所作的辅助线叙述如下:

小红:“过点A作AD⊥BC于点D”;
小聪:“作BC的垂直平分线AD,垂足为D”。
(1)请你判断小红和小聪的辅助线作法是否正确;
(2)根据正确的辅助线作法,写出证明过程.
解:(1)判断:                                          

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

从一个五边形中切去一个三角形,得到一个三角形和一个新的多边形,那么这个新的多边形的内角和等于多少度?请画图说明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知AC=BD,要使△ABC≌△DCB,则只需添加一个适当的条件是             

查看答案和解析>>

同步练习册答案