精英家教网 > 初中数学 > 题目详情

(2013年浙江义乌8分)在义乌市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.

请你结合图中信息,解答下列问题:

(1)本次共调查了    名学生;

(2)被调查的学生中,最喜爱丁类图书的学生有    人,最喜爱甲类图书的人数占本次被调查人数的    %;                   

(3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍.若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.

 

【答案】

解:(1)200。

(2)15;40%。

(3)设男生人数为x人,则女生人数为1.5x人,由题意得:

x+1.5x=1500×20%,解得:x=120。

当x=120时,5x=180。

答:该校最喜爱丙类图书的女生和男生分别有180人,120人。

【解析】(1)根据百分比=频数÷总数可得共调查的学生数:40÷20%=200(人)。

(2)最喜爱丁类图书的学生数=总数减去喜欢甲、乙、丙三类图书的人数即可:200-80-65-40=15(人);

再根据百分比=频数÷总数计算可得最喜爱甲类图书的人数所占百分比:80÷200×100%=40%。

(3)设男生人数为x人,则女生人数为1.5x人,由题意得方程x+1.5x=1500×20%,解出x的值可得答案。

考点:条形统计图,扇形统计图,频数、频率和总量的关系,用样本估计总体,一元一次方程的应用。

 

练习册系列答案
相关习题

科目:初中数学 来源:2013年初中毕业升学考试(浙江义乌卷)数学(解析版) 题型:解答题

(2013年浙江义乌10分)小明合作学习小组在探究旋转、平移变换.如图△ABC,△DEF均为等腰直角三角形,各顶点坐标分别为A(1,1),B(2,2),C(2,1),D(,0),E(, 0),F().

(1)他们将△ABC绕C点按顺时针方向旋转450得到△A1B1C.请你写出点A1,B1的坐标,并判断A1C和DF的位置关系;

(2)他们将△ABC绕原点按顺时针方向旋转450,发现旋转后的三角形恰好有两个顶点落在抛物线上.请你求出符合条件的抛物线解析式;

(3)他们继续探究,发现将△ABC绕某个点旋转45,若旋转后的三角形恰好有两个顶点落在抛物线上,则可求出旋转后三角形的直角顶点P的坐标.请你直接写出点P的所有坐标.

 

 

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(浙江义乌卷)数学(解析版) 题型:解答题

(2013年浙江义乌10分)为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数.下表提供了部分采购数据.

采购数量(件)

1

2

A产品单价(元/件)

1480

1460

B产品单价(元/件)

1290

1280

(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;

(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元.求该商家共有几种进货方案;

(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完.在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.

 

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(浙江义乌卷)数学(解析版) 题型:解答题

(2013年浙江义乌8分)已知直线PD垂直平分⊙O的半径OA于点B,PD交⊙O于点C,D,PE是⊙O的切线,E为切点,连结AE,交CD于点F.

(1)若⊙O的半径为8,求CD的长;

(2)证明:PE=PF;

(3)若PF=13,sinA=,求EF的长.

 

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(浙江义乌卷)数学(解析版) 题型:解答题

(2013年浙江义乌6分)如图1,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸片拼成如图2的等腰梯形.

(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a,b的代数式表示S1 和S2

(2)请写出上述过程所揭示的乘法公式.

 

查看答案和解析>>

同步练习册答案