精英家教网 > 初中数学 > 题目详情

解下列分式方程或不等式(组),并将不等式(组)的解集表示在数轴上:
(1)3x-(x+2)>0;(2)数学公式
(3)数学公式=数学公式;(4)数学公式=数学公式-数学公式

解:(1)3x-x-2>0
2x>2
x>1
在数轴上表示为:
(2)解不等式①得x≤4
解不等式②得x>2
在数轴上表示为:

∴原不等式组的解集为2<x≤4
(3)4x=3x+3
x=3;
经检验,x=3是原方程的根.
(4)(x-2)2=16+(x+2)2
-8x=16
x=-2;
经检验,x=-2是原方程的增根,
∴原方程无解.
分析:(1)先去括号,再合并同类项求解并在数轴上表示出来即可.
(2)分别解两个不等式,再取两解的交集并在数轴上表示出来即可.
(3)(4)先找到最简公分母,把分式方程转化成整式方程,再计算求解,注意分式方程最后要验根.
点评:本题主要考查解不等式(组)和分式方程的解法,注意正确在数轴上表示解集及分式方程的验根问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读理解题:一次数学兴趣小组的活动课上,师生有下面一段对话,请你阅读完后再解答下面问题:
老师:同学们,今天我们来探索如下方程的解法:(x2-x)2-8(x2-x)+12=0.
学生甲:老师,先去括号,再合并同类项,行吗?
老师:这样,原方程可整理为x4-2x3-7x2+8x+12=0,次数变成了4次,用现有的知识无法解答.同学们再观察观察,看看这个方程有什么特点?
学生乙:我发现方程中x2-x是整体出现的,最好不要去括号!
老师:很好.如果我们把x2-x看成一个整体,用y来表示,那么原方程就变成y2-8y+12=0.
全体同学:咦,这不是我们学过的一元二次方程吗?
老师:大家真会观察和思考,太棒了!显然一元二次方程y2-8y+12=0的解是y1=6,y2=2,就有x2-x=6或x2-x=2.
学生丙:对啦,再解这两个方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有这么多根啊.
老师:同学们,通常我们把这种方法叫做换元法.在这里,使用它最大的妙处在于降低了原方程的次数,这是一种很重要的转化方法.
全体同学:OK!换元法真神奇!
现在,请你用换元法解下列分式方程(
x
x-1
)2-5(
x
x-1
)-6=0

查看答案和解析>>

科目:初中数学 来源: 题型:

解下列分式方程或不等式(组),并将不等式(组)的解集表示在数轴上:
(1)3x-(x+2)>0;(2)
5x-6≤2(x+3)
1
2
x-1>3-
3
2
x

(3)
4
x+1
=
3
x
;(4)
x-2
x+2
=
16
x2-4
-
x+2
2-x

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

在一次数学兴趣小组的活动课上,师生有下面的一段对话,请你阅读完后再解答问题.
老师:同学们,今天我们来探索如下方程的解法:(x2-x)2-(x2-x)+12=0
学生甲:老师,这个方程先去括号,再合并同类项,行吗?
老师:这样,原方程可整理为x4-2x3-7x2+8x+12=0,次数变成了4次,用现有知识无法解答.同学们再观察观察,看看这个方程有什么特点?
学生乙:老师,我发现x2-x是整体出现的,最好不要去括号!
老师:很好,我们把x2-x看成一个整体,用y表示,即x2-x=y,那么原方程就变为y2+8y+12=0.
全体学生:(同学们都特别高兴)噢,这不是我们熟悉的一元二次方程吗?!
老师:大家真会观察和思考,太棒了!显然一元二次方程y2+8y+12=0的根是y1=6,y2=2,那么就有x2-x=6或x2-x=2.
学生丙:对啦,再解这两个方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有这么多根啊!
老师:同学们,通常我们把这种方法叫做换元法.在这里使用它的最大妙处在于降低了原方程的次数,这是一种重要的转化方法.
全体同学:OK,换元法真神奇!
现在,请你用换元法解下列分式方程:(
x
x-1
)2-5(
x
x-1
)-6=0

查看答案和解析>>

科目:初中数学 来源: 题型:

解下列分式方程或不等式:
(1)
2
x-3
=
1
x-1

(2)解不等式组
1-
x+1
3
≥0
3-4(x-1)<1

查看答案和解析>>

同步练习册答案