精英家教网 > 初中数学 > 题目详情

在⊙O中,直径AB=4cm,弦CD⊥AB于C,OE=数学公式cm,则弦CD的长为________cm.

2
分析:连接OC.根据勾股定理求得CE的长,再根据垂径定理求得CD的长.
解答:解:连接OC.
∵CD⊥AB于C,OE=cm,OC=2cm,
∴CE=1cm.
∴CD=2CE=2cm.
点评:此题综合运用了勾股定理和垂径定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.
(1)求∠B的大小;
(2)已知圆心0到BD的距离为3,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙O中,直径AB垂直于弦CD,垂足为E,连接AC,将△ACE沿AC翻折得到△ACF,直线FC与精英家教网直线AB相交于点G.
(1)直线FC与⊙O有何位置关系?并说明理由;
(2)若OB=BG=2,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙O中,直径AB与弦CD垂直,垂足为E,连接AC,将△ACE沿AC翻折得到△ACF,直线F精英家教网C与直线AB相交于点G.
(1)证明:直线FC与⊙O相切;
(2)若OB=BG,求证:四边形OCBD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

在⊙O中,直径AB=20cm,弦CD的长为10
3
cm,OP⊥CD,垂足为P,那么OP的长为
5
5
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙O中,直径AB⊥弦CD于E,连接BD,若∠D=30°,BD=2,则AE的长为(  )

查看答案和解析>>

同步练习册答案