如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠AOQ的度数为( )
![]()
A.60° B. 65° C. 72° D. 75°
D.
【解析】
试题分析:作辅助线连接OD,根据题意求出∠POQ和∠AOD的,利用平行关系求出∠AOP度数,即可求出∠AOQ的度数.
连接OD,AR,
![]()
∵△PQR是⊙O的内接正三角形,
∴∠PRQ=60°,
∴∠POQ=2×∠PRQ=120°,
∵四边形ABCD是⊙O的内接正方形,
∴△AOD为等腰直角三角形,
∴∠AOD=90°,
∵BC∥RQ,AD∥BC,
∴AD∥QR,
∴∠ARQ=∠DAR,
∴
,
∵△PQR是等边三角形,
∴PQ=PR,
∴
,
∴
,
∴∠AOP=
∠AOD=45°,
所以∠AOQ=∠POQ-∠AOP=120°-45°=75°.
故选D.
考点: 正多边形和圆.
科目:初中数学 来源: 题型:
| 7 |
| 14 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com