精英家教网 > 初中数学 > 题目详情
如图,直线y=-x+3与x轴、y轴分别交于点B、C,抛物线y=-x2+bx+c经过点B、C,点A是抛物线与x轴的另一个交点.
(1)求抛物线的解析式;
(2)求△ABC的面积;
(3)若P是抛物线上一点,且S△ABP=
1
2
S△ABC,这样的点P有______个.
(1)∵直线y=-x+3经过B、C两点,∴B(3,0),C(0,3);
已知抛物线经过B、C两点,则有:
-9+3b+c=0
c=3

解得
b=2
c=3

∴抛物线的解析式为:y=-x2+2x+3;

(2)令(1)所得的抛物线中y=0,得-x2+2x+3=0,
解得x=-1,x=3;
∴A(-1,0),
又∵B(3,0),C(0,3),
∴AB=4,OC=3;
S△ABC=
1
2
AB•OC=
1
2
×4×3=6;

(3)∵S△ABC=
1
2
AB•OC,S△ABP=
1
2
AB•|yP|,且S△ABP=
1
2
S△ABC
∴|yP|=
1
2
OC=1.5,
即P点的纵坐标为±1.5;
由函数的图象知,符合条件的P点共有4个.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知过坐标原点的抛物线经过A(x1,0),B(x2,3)两点,且x1、x2是方程x2+5x+6=0两根(x1>x2),抛物线顶点为C.
(1)求抛物线的解析式;
(2)若点D在抛物线上,点E在抛物线的对称轴上,且以A、O、D、E为顶点的四边形是平行四边形,求点E的坐标;
(3)P是抛物线上的动点,过点P作PM⊥x轴,垂足为M,是否存在点P使得以点P、M、O为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,点A是直线y=kx(k>0,且k为常数)上一动点,以A为顶点的抛物线y=(x-h)2+m交直线y=kx于另一点E,交y轴于点F,抛物线的对称轴交x轴于点B,交直线EF于点C.(点A,E,F两两不重合)
(1)请写出h与m之间的关系;(用含的k式子表示)
(2)当点A运动到使EF与x轴平行时(如图2),求线段AC与OF的比值;
(3)当点A运动到使点F的位置最低时(如图3),求线段AC与OF的比值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=
1
2
x2+(k+
1
2
)x+(k+1)(k为常数)与x轴交于A(x1,0)、B(x2,0)(x1<0<x2)两点,与y轴交于C点,且满足(OA+OB)2=OC2+16.
(1)求此抛物线的解析式;
(2)设M、N是抛物线在x轴上方的两点,且到x轴的距离均为1,点P是抛物线的顶点,问:过M、N、C三点的圆与直线CP是否只有一个公共点C?试证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,抛物线y=ax2-3ax+b经过A(-1,0),C(3,2)两点,与y轴交于点D,与x轴交于另一点B.
(1)求此抛物线的解析式;
(2)若直线y=kx-1(k≠0)将四边形ABCD面积二等分,求k的值;
(3)如图2,过点E(1,-1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转180°后得△MNQ(点M,N,Q分别与点A,E,F对应),使点M,N在抛物线上,求点M,N的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

学校要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA.O恰好在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.且在过OA的任意平面上的抛物线如图1所示,建立平面直角坐标系(如图2),水流喷出的高度y(m)与水面距离x(m)之间的函数关系式是y=-x2+
5
2
x+
3
2
,请回答下列问题:
(1)花形柱子OA的高度;
(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在平面直角坐标系中,二次函数y=a(x-2)2-1图象的顶点为P,与x轴交点为A、B,与y轴交点为C,连接BP并延长交y轴于点D.
(1)写出点P的坐标;
(2)连接AP,如果△APB为等腰直角三角形,求a的值及点C、D的坐标;
(3)在(2)的条件下,连接BC、AC、AD,点E(0,b)在线段CD(端点C、D除外)上,将△BCD绕点E逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD重叠部分的面积为S,根据不同情况,分别用含b的代数式表示S,选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b为何值时,重叠部分的面积最大写出最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD中,AB=6cm,AD=3cm,点E在边DC上,且DE=4cm.动点P从点A开始沿着A?B?C?E的路线以2cm/s的速度移动,动点Q从点A开始沿着AE以1cm/s的速度移动,当点Q移动到点E时,点P停止移动.若点P、Q同时从点A同时出发,设点Q移动时间为t(s),P、Q两点运动路线与线段PQ围成的图形面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数y=9-4x2的最大值是______.

查看答案和解析>>

同步练习册答案