精英家教网 > 初中数学 > 题目详情

如图(1),两半径为r的等圆⊙O1和⊙O2相交于M,N两点,且⊙O2过点O1.过M点作直线AB垂直于MN,分别交⊙O1和⊙O2于A,B两点,连结NA,NB.

(1)猜想点O2与⊙O1有什么位置关系,并给出证明;

(2)猜想△NAB的形状,并给出证明;

(3)如图(2),若过M的点所在的直线AB不垂直于MN,且点A,B在点M的两侧,那么(2)中的结论是否成立,若成立请给出证明.

答案:
解析:

  解:(1)上  (1分)

  证明:过点

  

  又的半径也是

  上.(3分)

  (2)是等边三角形  (5分)

  证明:

  

  的直径,的直径,

  即上,上.(7分)

  连结,则的中位线.

  

  ,则是等边三角形.(9分)

  (3)仍然成立.(11分)

  证明:由(2)得在所对的圆周角为

  在所对的圆周角为.(12分)

  当点在点的两侧时,

  在所对的圆周角

  在所对的圆周角

  是等边三角形.(14分)

  (2),(3)是中学生猜想为等腰三角形证明正确给一半分.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知如图,过O且半径为5的⊙P交x的正半轴于点M(2m,0)、交y轴的负半轴于点D,弧OBM与弧OAM关于x轴对称,其中A、B、C是过点P且垂直于x轴的直线与两弧及圆的交点.
(1)当m=4时,
①填空:B的坐标为
 
,C的坐标为
 
,D的坐标为
 

②若以B为顶点且过D的抛物线交⊙P于点E,求此抛物线的函数关系式和写出点E的坐标;
③除D点外,直线AD与②中的抛物线有无其它公共点并说明理由.
(2)是否存在实数m,使得以B、C、D、E为顶点的四边形组成菱形?若存在,求m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•廊坊一模)圆的滚动问题探索:
(1)如图1,一个半径为r的圆沿直线方向从A地滚动到B地,若AB的长为m,则该圆在滚动过程中自转了
m
2πr
m
2πr
圈.(用含的式子表示)
试验:
现有两个半径相等的圆(如图5),将⊙O2固定,⊙O1沿定圆的周围滚动,滚动时两圆保持相外切的位置关系.当⊙O1沿⊙O2周围滚动一周回到原来的位置时,⊙O1自转了2圈,而⊙O1的圆心运动的线路也是一个圆,而这个圆的周长恰好是⊙O1的周长的2倍.
(2)如图2,⊙O1的半径为r,⊙O2的半径为R(R>r),现将⊙O2固定,让,⊙O1沿⊙O2的周围滚动,滚动时两圆保持相外切的位置关系.当⊙O1沿⊙O2沿周围滚动一周回到原来的位置时,⊙O1自转了
R+r
r
R+r
r
圈;

(3)如图3,⊙O1,和⊙O2内切,⊙O1的半径为r,⊙O2的半径为R(R>r),现将⊙O2固定,让,⊙O1沿⊙O2的边缘滚动,动时两圆保持相内切的位置关系.当⊙O1沿⊙O2边缘滚动一圈回到原来的位置时,⊙O1自转了
R-r
r
R-r
r
圈.
解决问题:
如图4,一个等边三角形与它的一边相切的圆的周长相等,当此圆按箭头方向从某一位置沿等边三角形的三边作无滑动滚动,直至回到原来的位置时,该圆自转了多少圈?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,圆柱底面半径为2cm,高为9πcm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线的最短距离.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解:
条件:
如图1,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+AB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小.
应用:
(1)如图2,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点,连接BD,由正方形对称性可知,B与D关于直线AC对称,连接ED交AC于P,则PB+PE的最小值是
5
5

(2)如图3,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则PA+PC的最小值是
2
3
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,圆柱底面半径为
2
π
cm,高为9cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为(  )
A、12cm
B、
97
cm
C、15cm
D、
21
cm

查看答案和解析>>

同步练习册答案