分析 连接CM,根据直角三角形的性质求出CM,根据三角形中位线定理得到MN=$\frac{1}{2}$BC,MN∥BC,证明四边形NDCM是平行四边形,根据平行四边形的性质解答.
解答 解:连接CM,![]()
∵∠ACB=90°,M是AB的中点,
∴CM=$\frac{1}{2}$AB=3,
∵M、N分别是AB、AC的中点,
∴MN=$\frac{1}{2}$BC,MN∥BC,
∵CD=$\frac{1}{3}$BD,
∴MN=CD,又MN∥BC,
∴四边形NDCM是平行四边形,
∴DN=CM=3.
点评 本题考查的是直角三角形的性质和三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 3.4×104=340000 | B. | m×2m2=3m2 | C. | (-$\frac{1}{2}$mn2)2=m2n4 | D. | 4xy-4yx=0 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com