精英家教网 > 初中数学 > 题目详情
如图,在⊙O的内接△ABC中,AB=AC,D是⊙O上一点,AD的延长线交BC的延长线于点P.
(1)求证:AB2=AD•AP;
(2)若⊙O的直径为25,AB=20,AD=15,求PC和DC的长.
(1)证明:∵∠ADC+∠B=180°,∠B=∠ACB

∴∠ACP+∠ACB=∠ACP+∠B=180°
∴∠ADC=∠ACP
∴△ADC△ACP
AD
AC
=
AC
AP
,即
AD
AB
=
AB
AP

所以AB2=AD•AP;

(2)过点A作直径AE交BC于点F.
∵△ABC是等腰三角形,
∴AE垂直平分BC
设AF=a,则EF=25-a,BF=
400-a2

由BF2=AF•EF,得400-a2=a(25-a)
所以AF=a=16,BF=FC=12.
方法1:
由(1)AB2=AD•AP得:AP=
AB2
AD
=
400
15
=
80
3

在Rt△AFP中,PF=
AP2-AF2
=
(
80
3
)
2
-162
=
64
3

∴PC=PF-FC=
64
3
-12
=
28
3

又由△PCD△PAB得:
DC
AB
=
PC
PA

DC=
PC•AB
PA
=
28×20
80
=7

方法2:(前面部分给分相同)连接BE、EC、BD.
∵AE是直径,
∴∠ABE=90°,且BE=
252-202
=15

∴EC=BE=15,又已知AD=15,∴AD=EC
∴DCAE,即DC⊥BC,则BD是直径
∴DC=
BD2-BC2
=
252-242
=7

在Rt△PCD中,PD=PA-AD=
80
3
-15
=
35
3

∴PC=
(
35
3
)
2
-72
=
28
3
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知C是以AB为直径的半圆上的一点,AB=10,CD⊥AB于D点,以AD、DB为直径画两个半圆,EF是这两个半圆的外公切线,E、F为切点.
(1)求证:CD=EF;
(2)求证:四边形EDFC是矩形;
(3)若DB=|m|,则m是使关于x的方程x2+2(m-1)x+m2+3=0的两个实根的平方和为22的实数值,求矩形EDFC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,施工工地的水平地面上,有三根外径都是1米的水泥管,两两相切地堆放在一起,则其最高点到地面的距离是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在正方形ABCD中,O是CD边上的一点,以O为圆心,OD为半径的半圆恰好与以B为圆心,BC为半径的扇形的弧外切,则∠OBC的正弦值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,⊙Oi和⊙O2相切于P点,过P的直线交⊙Oi于A,交⊙O2于B,求证:OiAO2B.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,ABCD是⊙O的内接四边形,DPAC,交BA的延长线于P,求证:AD•DC=PA•BC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

正六边形的边心距与半径的比为(  )
A.
1
4
B.
1
2
C.
3
4
D.
3
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,两圆相交于A,B两点,小圆经过大圆的圆心O,点C,D分别在两圆上,若∠ADB=100°,则∠ACB的度数为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知圆内接正方形的边长为
2
,则该圆的内接正六边形的边长为______.

查看答案和解析>>

同步练习册答案