精英家教网 > 初中数学 > 题目详情

菱形和矩形一定都具有的性质是( )

A.对角线相等 B.对角线互相垂直

C.对角线互相平分且相等 D.对角线互相平分

练习册系列答案
相关习题

科目:初中数学 来源:2014-2015学年贵州省黔南州七年级下学期期末数学试卷(解析版) 题型:选择题

在平面直角坐标系中,点P(﹣2,﹣3)在( )

A.第一象限 B.第二象限 C.第三象限 D.第四象限

查看答案和解析>>

科目:初中数学 来源:2014-2015学年广东省中山市八年级下学期期末数学试卷(解析版) 题型:填空题

如图,函数y=ax和y=bx+c的图象相交于点A(1,2),则不等式ax>bx+c的解集为 .

查看答案和解析>>

科目:初中数学 来源:2014-2015学年广东省肇庆市封开县八年级下学期数学期末数学试卷(解析版) 题型:解答题

如图,在正方形ABCD中,E为ED边上的一点,CE=CF,∠FDC=30°,求∠BEF的度数.

查看答案和解析>>

科目:初中数学 来源:2014-2015学年广东省肇庆市封开县八年级下学期数学期末数学试卷(解析版) 题型:填空题

如图,菱形的两条对角线分别是BD=6和AC=8,则菱形的周长是 .

查看答案和解析>>

科目:初中数学 来源:2014-2015学年广东省肇庆市封开县八年级下学期数学期末数学试卷(解析版) 题型:选择题

一次函数y=x-2不经过( )

A.第一象限 B.第二象限 C.第三象限 D.第四象限

查看答案和解析>>

科目:初中数学 来源:2014-2015学年山东省青岛市李沧区中考一模数学试卷(解析版) 题型:解答题

【问题情境】

张老师给爱好学习的小林和小兰提出这样一个问题:如图①,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.

小林的证明思路是:如图②,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.

小兰的证明思路是:如图②,过点P作PG⊥CF,垂足为G,通过证明四边形PDFG是矩形,

可得:PD=GF,PE=CG,则PD+PE=CF.

【变式探究】如图③,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;

【结论运用】请运用上述解答中所积累的经验和方法完成下列两题:

如图④,在平面直角坐标系中有两条直线l1:y=x+3、l2:y=﹣3x+3,若l2上的一点M到l1的距离是1,请运用上述的结论求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源:2014-2015学年山东省青岛市李沧区中考一模数学试卷(解析版) 题型:选择题

函数(a≠0)与y=a(x﹣1)(a≠0)在同一坐标系中的大致图象是( )

查看答案和解析>>

科目:初中数学 来源:2014-2015学年湖北省武汉市九年级元月调考模拟1数学试卷(解析版) 题型:填空题

已知整数k<5,若△ABC的边长均满足关于x的方程x2﹣3x+8=0,则△ABC的周长是 .

查看答案和解析>>

同步练习册答案