精英家教网 > 初中数学 > 题目详情
某汽车在刹车后行驶的距离s(单位:m)与时间t(单位:s)之间的关系得部分数据如下表:
时间t(s)
0
0.2
0.4
0.6
0.8
1.0
1.2

行驶距离s(m)
0
2.8
5.2
7.2
8.8
10
10.8

假设这种变化规律一直延续到汽车停止.
(1)根据这些数据在给出的坐标系中画出相应的点;

(2)选择适当的函数表示s与t之间的关系,求出相应的函数解析式;
(3)刹车后汽车行驶了多长距离才停止?
(1)下图 (2)s=﹣5t2+15t (3)m

试题分析:
解:(1)描点图所示:(画图基本准确均给2分);

(2)由散点图可知该函数为二次函数
设二次函数的解析式为:s=at2+bt+c,
∵抛物线经过点(0,0),
∴c=0,
又由点(0.2,2.8),(1,10)可得:
解得:a=﹣5,b=15;
∴二次函数的解析式为:s=﹣5t2+15t;
经检验,其余个点均在s=﹣5t2+15t上.
(3)汽车刹车后到停止时的距离即汽车滑行的最大距离,
当t=﹣时,滑行距离最大,S=
即刹车后汽车行驶了m才停止.
点评:常用待定系数法求函数解析式;函数通常在顶点,处取得最值。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

将抛物线y=x2向左平移1个单位,再向下平移2个单位,得到抛物线的解析式为
A.y=x2-2x-1B.y=-x2+2x-1
C.y=x2+2x-1D.y=-x2+4x+1

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将抛物线y=+3向右平移2个单位后,得到的新抛物线解析式是    

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线经过
(1)求此抛物线的解析式;
(2)求出顶点的坐标,连接,求证△∽△
(3)在直线上方的抛物线上是否存在一点M,使S最大,求出M的坐标;

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,最低点为M,且S△AMB.

(1)求此抛物线的解析式,并说明这条抛物线是由抛物线y=ax2怎样平移得到的;
(2)如果点P由点A开始沿着射线AB以2cm/s的速度移动,同时点Q由点B开始沿BC边以1cm/s的速度向点C移动,当其中一点到达终点时运动结束;
①在运动过程中,P、Q两点间的距离是否存在最小值,如果存在,请求出它的最小值;
②当PQ取得最小值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是梯形? 如果存在,求出R点的坐标,如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题10分)如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴负半轴上,且OD=10,OB=8.将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合.

(1)直接写出点A、B的坐标:A(         )、B(          );
(2)若抛物线y=-x2+bx+c经过点A、B,请求出这条抛物线的解析式;
(3)当≤x≤7,在抛物线上存在点P,使△ABP的面积最大,那么△ABP最大面积是                                 .(请直接写出结论,不需要写过程)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(8分)如图,抛物线轴交于点,与轴交于,B两点(点A在点B的右侧),过C作直线,与抛物线相交于点,与对称轴交于点N,点为直线上的一个动点,过P作轴的垂线交抛物线于点G,设线段PG的长度为

(1)求该抛物线的函数解析式
(2)当0<<5时,请用含的代数式表示,求出的最大值
(3)是否存在这样的点P,使以M,N,P,G为顶点的四边形是平行四边形,若存在,请求出点P的坐标;若存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知抛物线轴交于A(,0)、B(3,0)两点,则为( )
A.-5B.-1C.1D.5

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数的顶点坐标是           

查看答案和解析>>

同步练习册答案