精英家教网 > 初中数学 > 题目详情

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-4,3)、B(2,0)两点,对称轴为y轴,经过点C(0,-2)的直线l与x轴平行,P(m,n)是抛物线上的动点,O为坐标原点.
(1)求直线AB和抛物线的函数解析式;
(2)以A为圆心,AO为半径画⊙A,判断直线l与⊙A的位置关系,并说明理由;
(3)设PO=d1,点P到直线l的距离为d2,试探索d1、d2间的数量关系;
(4)D点在直线AB上,D点的横坐标为-2,当△PDO的周长最小时,求四边形CODP的面积.

解:(1)设直线AB的解析式为y=kx+b,则有:

解得:
∴直线AB的解析式为y=-x+1;
由题意知:抛物线的对称轴为y轴,则抛物线经过(-4,3),(2,0),(-2,0)三点;
设抛物线的解析式为:y=a(x-2)(x+2),
则有:3=a(-4-2)(-4+2),
解得:a=
∴抛物线的解析式为:y=x2-1;

(2)∵A(-4,3),
∴OA==5;
∵A到直线l的距离为:3-(-2)=5;
∴⊙A的半径等于圆心A到直线l的距离,
即直线l与⊙A相切;

(3)d1=d2
理由:∵P(m,n)是抛物线上的动点,
∴设P(x,x2-1),
∴PO=d1===x2+1,点P到直线l的距离为d2=x2-1-(-2)=x2+1,
∴d1=d2

(4)过P作PM∥y轴,交直线l于M;
则P(m,n),M(m,-2);
∴PO2=m2+n2,PM2=(n+2)2
∵n=m2-1,即m2=4n+4;
∴PO2=n2+4n+4=(n+2)2
∴PO2=PM2
即PO=PM;
∵D点的横坐标为-2,
∴D(-2,2),则OD的长为定值;
若△PDO的周长最小,则PO+PD的值最小;
∵PO+PD=PD+PM≥DM,
∴PD+PO的最小值为DM,
即当D、P、M三点共线时PD+PM=PO+PD=DM;
此时点P的横坐标为-2,代入抛物线的解析式可得y=1-1=0,
即P(-2,0);
∴S四边形CODP=S△POD+S△POC=×2×2+×2×2=4.
分析:(1)用待定系数法即可求出直线AB的解析式;根据抛物线的对称轴为y轴,可得抛物线经过(-4,3),(2,0),(-2,0)三点,然后用待定系数法即可求出抛物线的解析式;
(2)根据A点坐标可求出半径OA的长,然后判断A到直线l的距离与半径OA的大小关系即可;
(3)首先设P(x,x2-1),即可求得d1、d2的长,继而可求得d1、d2间的数量关系;
(4)根据直线AB的解析式可求出D点的坐标,即可得到OD的长,由于OD的长为定值,若△POD的周长最小,那么PD+OP的长最小,可过P作y轴的平行线,交直线l于M;首先证PO=PM,此时PD+OP=PD+PM,而PD+PM≥DM,因此PD+PM最小时,应有PD+PM=DM,即D、P、M三点共线,由此可求得P点的坐标;又由S四边形CODP=S△POD+S△POC,即可求得答案.
点评:此题考查了待定系数法求函数的解析式、两点间的距离公式、切线的判定以及图形面积的求解方法.此题难度较大,注意掌握数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点精英家教网C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P的坐标,若不存在,请说明理由.
(4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)精英家教网、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)点P是抛物线对称轴上一点,若△PAB∽△OBC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

同步练习册答案