精英家教网 > 初中数学 > 题目详情
精英家教网如图,梯形ABCD被对角线分为四个小三角形.已知△AOB和△BOC的面积分别为25m2和35m2,那么梯形的面积是
 
m2
分析:首先△AOB和△BOC的面积分别为25m2和35m2,根据等高三角形的面积比等于对应底的比,即可求得AO:OC的值,由AB∥CD,即可得△AOB∽△COD,然后根据相似三角形的面积比等于相似比的平方,即可求得△BOC的面积,继而求得梯形的面积.
解答:解:∵△AOB和△BOC的面积分别为25m2和35m2
∴AO:OC=25:35=5:7,
∵AB∥CD,
∴△AOB∽△COD,
BO
OD
=
AO
OC
=
5
7
S△AOB
S△COD
=(
OA
OC
)
2
=(
5
7
)
2

∴S△AOD=
7
5
S△AOB=
7
5
×25=35(m2),S△COD=
49
25
S△AOB=
49
25
×25=49(m2),
∴梯形ABCD的面积是:S△AOB+S△BOC+S△COD+S△AOD=25+35+49+35=144(m2).
故答案为:144.
点评:此题考查了相似三角形的判定与性质,梯形的性质,以及三角形面积的求解方法.此题难度适中,解题的关键是注意数形结合思想的应用,注意等高三角形的面积比等于对应底的比与相似三角形的面积比等于相似比的平方定理的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,梯形ABCD被对角线分为4个小三角形,已知△AOB和△BOC的面积分别为25cm2和35cm2,那么梯形的面积是(  )m2
A、144B、140C、160D、无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,梯形ABCD中,AD∥BC,AB=CD,过点D作线段DF被BC垂直平分,点E为垂足.连接BF、CF、AC.
(1)求证:四边形ABFC是平行四边形;
(2)在DE2=BE•CE时,四边形ABFC是矩形.请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,梯形ABCD被对角线分为4个小三角形,已知△AOB和△BOC的面积分别为25cm2和35cm2,那么梯形的面积是m2


  1. A.
    144
  2. B.
    140
  3. C.
    160
  4. D.
    无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,梯形ABCD被对角线分为四个小三角形.已知△AOB和△BOC的面积分别为25m2和35m2,那么梯形的面积是________m2

查看答案和解析>>

同步练习册答案