精英家教网 > 初中数学 > 题目详情
22、如图所示,在四边形ABCD中,已知:AB:BC:CD:DA=2:2:3:1,且∠B=90°,求∠DAB的度数.
分析:连接AC,由已知和等腰三角形的性质可知∠BAC=45°,在△DAC中利用勾股定理的逆定理可∠DAC=90°,从而求出∠DAB的度数.
解答:解:连接AC.
设DA=k,则AB=2k,BC=2k,CD=3k.
∵∠B=90°,AB:BC=2:2,
∴∠BAC=45°,AC2=AB2+BC2=4k2+4k2=8k2
∵(3k)2-k2=8k2
∴∠DAC=90°,
∴∠DAB=∠BAC+∠DAC=135°.
点评:本题考查等腰三角形的性质及勾股定理的逆定理的应用.本题将∠DAB分成∠BAC,∠DAC是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图所示,在四边形ABCD中,CB=CD,∠ABC=∠ADC=90°,∠BAC=35°,则∠BCD的度数为
110
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在四边形ABCD中,∠BAD=90°,∠B=75°,∠ADC=135°,AB=AD=
2
,E为BC中点,则AE+DE长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图所示,在四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需要条件(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在四边形ABCD中,∠A=90°,AB=9,BC=20,CD=25,AD=12,求四边形ABCD的面积.

查看答案和解析>>

同步练习册答案