精英家教网 > 初中数学 > 题目详情
(2012•衡阳)如图,AF=DC,BC∥EF,请只补充一个条件,使得△ABC≌△DEF,并说明理由.
分析:首先由AF=DC可得AC=DF,再由BC∥EF根据两直线平行,内错角相等可得∠EFD=∠BCA,再加上条件EF=BC即可利用SAS证明△ABC≌△DEF.
解答:解:补充条件:EF=BC,可使得△ABC≌△DEF.理由如下:
∵AF=DC,
∴AF+FC=DC+FC,
即:AC=DF,
∵BC∥EF,
∴∠EFD=∠BCA,
在△EFD和△BCA中,
EF=BC
∠EFD=∠BCA
AC=DF

∴△EFD≌△BCA(SAS).
点评:此题主要考查了全等三角形的判定,关键是熟练掌握判定定理:SSS、SAS、ASA、AAS,HL.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•衡阳)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:
①a>0   ②2a+b=0  ③a+b+c>0  ④当-1<x<3时,y>0
其中正确的个数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•衡阳)如图,一段河坝的横截面为梯形ABCD,试根据图中数据,求出坝底宽AD.(i=CE:ED,单位:m)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•衡阳)如图,A、B两点的坐标分别是(8,0)、(0,6),点P由点B出发沿BA方向向点A作匀速直线运动,速度为每秒3个单位长度,点Q由A出发沿AO(O为坐标原点)方向向点O作匀速直线运动,速度为每秒2个单位长度,连接PQ,若设运动时间为t(0<t<
103
)秒.解答如下问题:
(1)当t为何值时,PQ∥BO?
(2)设△AQP的面积为S,
①求S与t之间的函数关系式,并求出S的最大值;
②若我们规定:点P、Q的坐标分别为(x1,y1),(x2,y2),则新坐标(x2-x1,y2-y1)称为“向量PQ”的坐标.当S取最大值时,求“向量PQ”的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•衡阳)如图所示,已知抛物线的顶点为坐标原点O,矩形ABCD的顶点A,D在抛物线上,且AD平行x轴,交y轴于点F,AB的中点E在x轴上,B点的坐标为(2,1),点P(a,b)在抛物线上运动.(点P异于点O)
(1)求此抛物线的解析式.
(2)过点P作CB所在直线的垂线,垂足为点R,
①求证:PF=PR;
②是否存在点P,使得△PFR为等边三角形?若存在,求出点P的坐标;若不存在,请说明理由;
③延长PF交抛物线于另一点Q,过Q作BC所在直线的垂线,垂足为S,试判断△RSF的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•衡阳)如图,直线a⊥直线c,直线b⊥直线c,若∠1=70°,则∠2=(  )

查看答案和解析>>

同步练习册答案