精英家教网 > 初中数学 > 题目详情
已知,如图,AD是BC的垂直平分线,DE⊥AB于点E,DF⊥AC于点F,
求证:(1)∠ABD=∠ACD;
      (2)DE=DF.
分析:(1)由AD是BC的垂直平分线,根据线段垂直平分线的性质,可得AB=AC,DB=DC,继而可证得结论;
(2)由等腰三角形的性质,可得∠BAD=∠CAD,又由DE⊥AB于点E,DF⊥AC于点F,根据角平分线的性质,即可证得DE=DF.
解答:证明:(1)∵AD是BC的垂直平分线,
∴AB=AC,BD=CD,
∴∠ABC=∠ACB,∠DBC=∠DCB,
∴∠ABD=∠ACD;

(2)∵AB=AC,AD是BC的垂直平分线,
∴∠BAD=∠CAD,
∵DE⊥AB,DF⊥AC,
∴DE=DF.
点评:此题考查了线段垂直平分线的性质以及角平分线的性质.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,AD是△ABC的高,试判断∠DAE与∠B、∠ACB之间的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为(  )
A、3:2B、9:4C、2:3D、4:9

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AD是⊙O的弦,OB⊥AD于点E,交⊙O于点C,OE=1,BE=8,AE:AB=1:3.精英家教网
(1)求证:AB是⊙O的切线;
(2)点F是弧ACD上的一点,当∠AOF=2∠B时,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AD是一条直线,∠1=65°,∠2=115°.求证:BE∥CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AD是△ABC的平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,且∠AFG=∠G.求证:GE∥AD.

查看答案和解析>>

同步练习册答案