分析 (1)根据方程有两个不相等的实数根可得△=(m-2)2-4•$\frac{1}{4}$m2=-4m+4>0,解不等式求出m的取值范围即可;
(2)根据方程有两个相等的实数根可得△=(m-2)2-4•$\frac{1}{4}$m2=-4m+4=0,解m的一元一次方程,求出m的值,进而求出方程的根;
(3)根据方程有实数根可得△=(m-2)2-4•$\frac{1}{4}$m2=-4m+4≥0,求出m的取值范围,进而得到m的最大整数值.
解答 解:(1)∵关于x的方程$\frac{1}{4}$x2-(m-2)x+m2=0有两个不相等的实数根,
∴△>0,
∴△=(m-2)2-4•$\frac{1}{4}$m2=-4m+4>0,
∴m<1;
(2)∵方程有两个相等的实数根,
∴△=0,
∴△=(m-2)2-4•$\frac{1}{4}$m2=-4m+4=0,
∴m=1,
∴$\frac{1}{4}$x2+x+1=0,
∴x=-$\frac{1}{2}$;
(3)∵方程有实数根,
∴△≥0,
∴△=(m-2)2-4•$\frac{1}{4}$m2=-4m+4≥0,
∴m≤1,
∴m的最大整数值为1.
点评 本题主要考查了根的判别式的知识,解答本题要掌握一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根,此题难度不大.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com