精英家教网 > 初中数学 > 题目详情

作业宝如图,正△ABC中,∠ADE=60°,
(1)求证:△ABD∽△DCE;
(2)若BD=2,CD=4,求AE的长.                                                                   

(1)证明:
∵△ABC是等边三角形,
∴∠B=∠C=60°,
∴∠BAD+∠ADB=120°,
∵∠ADE=60°,
∴∠BDA+∠EDC=120°,
∴∠BAD=∠EDC,
∴△ABD∽△DCE;
(2)解:
∵△ABD∽△DCE,
∴AB:CD=BD:CE,
∵BD=2,CD=4,
∴6:4=2:CE,
∴CE=
∴AE=AB-CE=
分析:(1)由等边三角形的性质可得:∠B=∠C=60°,再证明∠BAD=∠EDC,从而证明:△ABD∽△DCE;
(2)利用(1)中的三角形相似,可得到关于CE,BD的比利式,继而求出CE的长,AE即可求.
点评:本题考查了相似三角形的判定和性质,题目比较简单,是中考常见题型.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)如图,正△ABC中,点M与点N分别是BC、CA上的点,且BM=CN,连接AM、BN,两线交于点Q,求∠AQN的度数.
精英家教网
(2)将1题中的“正△ABC”分别改为正方形ABCD,正五边形ABCDE,正六边形ABCDEF,…,正n边形ABCD…N,其余条件不变,根据第1题的求解思路分别推断∠AQN的度数,将结论填入下表:
正多边形 正方形 正五边形 正六边形 正n边形
∠AQN的度数
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正△ABC中,点M、N分别在AB、AC上,且AN=BM,BN与CM相交于点O,若S△ABC=7,S△OBC=2,则
BMBA
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正△ABC中,MN∥AC,
BM
AM
=
3
2
,D为AC上的一点,O为△BMN的外心,如果
S△AOD
S△ABC
=
1
5
,那么
AD
AC
1
3
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•路北区一模)探究一:如图,正△ABC中,E为AB边上任一点,△CDE为正三角形,连接AD,猜想AD与BC的位置关系,并说明理由.
探究二:如图,若△ABC为任意等腰三角形,AB=AC,E为AB上任一点,△CDE为等腰三角形,DE=DC,且∠BAC=∠EDC,连接AD,猜想AD与BC的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正△ABC中,P为正三角形内任意一点,过P作PD⊥BC,PE⊥AB,PF⊥AC连结AP、BP、CP,如果S△APF+S△BPE+S△PCD=
3
3
2
,那么△ABC的内切圆半径为(  )

查看答案和解析>>

同步练习册答案