精英家教网 > 初中数学 > 题目详情

如图,直线y=-x-1交两坐标轴于A、B两点,⊙M经过A、B两点,交x轴正半轴于点C,延长BM交⊙M于D,反比例函数数学公式>0)的图象经过点D,若C(2,0),则k=________.

2
分析:连AD、BC,过D点作DE⊥x轴于E,先确定A点坐标为(-1,0),B点坐标为(0,-1),根据等腰直角三角形的判定与性质得到△OAB为等腰直角三角形,则∠OAB=45°,AB=OA=,利用勾股定理可计算出BC=,根据圆周角定理得到∠DAB=90°,∠ADB=∠OCB,易证得Rt△ADB∽Rt△OCB,则BD:BC=AB:OB,即BD:=:1,可得到BD=,在Rt△ADB中,运用勾股定理计算AD=2,由于∠OAB=45°,∠DAB=90°得到∠DAE=90°-45°=45°,于是得到△ADE为等腰直角三角形,AE=DE=×2=2,则OE=1,可确定D点坐标,然后利用待定系数法克确定k的值.
解答:连AD、BC,过D点作DE⊥x轴于E,如图,
对于y=-x-1,令x=0,则y=-1;令y=0,-x-1=0,解得x=-1,
∴A点坐标为(-1,0),B点坐标为(0,-1),
∴△OAB为等腰直角三角形,
∴∠OAB=45°,AB=OA=
而C点坐标为(2,0),
∴BC==
∵BD为⊙O的直径,
∴∠DAB=90°,
∴∠DAE=90°-45°=45°,
∴AE=DE=AD,
又∵∠ADB=∠OCB,
∴Rt△ADB∽Rt△OCB,
∴BD:BC=AB:OB,即BD:=:1,
∴BD=
在Rt△ADB中,AD===2
∴AE=DE=×2=2,
∴OE=AE-OA=2-1=1,
∴点D的坐标为(1,2),
把D(1,2)代入y=得k=1×2=2.
故答案为2.
点评:本题考查了反比例函数综合题:运用待定系数法确定反比例函数的解析式;会确定直线与坐标轴的交点坐标;学会运用圆周角定理进行几何证明;熟练运用等腰直角三角形的性质、勾股定理和相似比进行几何计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,直线:y1=kx+b与抛物线:y2=x2+bx+c交于点A(-2,4),B(8,2).精英家教网
(1)求出直线解析式;
(2)求出使y1>y2的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,直线a、b都与直线c相交,给出下列条件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判断a∥b的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,直线AB、CD相交于点E,EF⊥AB于E,若∠CEF=59°,则∠AED的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线y=6-x交x轴、y轴于A、B两点,P是反比例函数y=
4
x
(x>0)
图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F.则AF•BE=(  )
A、8
B、6
C、4
D、6
2

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,直线a∥c,b∥c,直线d与直线a、b、c相交,已知∠1=60°,求∠2、∠3的度数(可在图中用数字表示角).

查看答案和解析>>

同步练习册答案