精英家教网 > 初中数学 > 题目详情
精英家教网如图,在正方形ABCD中,点F在CD边上,射线AF交BD于点E,交BC的延长线于点G.
(1)求证:△ADE≌△CDE;
(2)过点C作CH⊥CE,交FG于点H,求证:FH=GH;
(3)当AD:DF=
3
时,试判断△ECG的形状并证明结论.
分析:(1)由题意,AD=CD,∠1=∠2,DE=DE,易证△ADE≌△CDE.
(2)如图,由∠4+∠5=90°,∠5+∠6=90°,所以∠4=∠6,又∠3=∠G,所以∠6=∠G,同理,可得∠5=∠7,即可得到CH=HG=FH;
(3)由∠ADF=90°,AD:DF=
3
,可得∠AFD=60°,结合(1)得,∠3=∠G=∠4=30°,∠AFD=∠7=60°,所以,
∠CEG=∠G=30°.
解答:精英家教网(1)证明:∵四边形是ABCD正方形,BD是对角线,
∴AD=CD,∠1=∠2,∠DCB=∠DCG=90°,
∵DE=DE,
∴△ADE≌△CDE;

(2)∵△ADE≌△CDE,
∴∠3=∠4,
∵CH⊥CE于C,
∴∠4+∠5=90°,
∵∠DCG=∠5+∠6=90°,
∴∠4=∠6,
∵AD∥BC,
∴∠3=∠G,
∴∠6=∠G,
∴HC=HG,
∵∠7+∠G=90°,∠5+∠6=90°,
∴∠5=∠7,
∴HF=HC,
∴HF=HG;

(3)△ECG是等腰三角形.理由如下:
∵∠ADF=90°,AD:DF=
3

∴∠AFD=60°,
∴∠3=∠G=∠4=30°,∠AFD=∠7=60°,
∴∠CEG=∠7-∠4=∠G=30°,
∴CE=CG. 
即△ECG是等腰三角形.
点评:本题考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定,本题综合性比较强,考查了学生综合运用知识解答问题的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案