精英家教网 > 初中数学 > 题目详情

如图,PA、PB是⊙O 的切线,切点分别是A、B,点C是⊙O上异与点A、B的点,如果∠P=60°,那么∠ACB等于________.

60°或120°
分析:分两种情况:(1)当C在优弧AB上;(2)当C在劣弧AB上;连接OA、OB,在四边形PAOB中,∠OAP=∠OBP=90°,由内角和求得∠AOB的大小,然后根据圆周角定理∠AOB=2∠ACB=120°.
解答:解:(1)如图(1),连接OA、OB.
在四边形PAOB中,由于PA、PB分别切⊙O于点A、B,
则∠OAP=∠OBP=90°;
由四边形的内角和定理,知
∠APB+∠AOB=180°;
又∠APB=60°,
∴∠AOB=120°;
又∵∠ACB=∠AOB(同弧所对的圆周角是所对的圆心角的一半),
∴∠ACB=60°;
(2)如图(2),连接OA、OB,作圆周角∠ADB.
在四边形PAOB中,由于PA、PB分别切⊙O于点A、B,
则∠OAP=∠OBP=90°;
由四边形的内角和定理,知
∠APB+∠AOB=180°;
又∠APB=60°,
∴∠AOB=120°;
∴∠ADB=∠AOB=60°,
∴∠ACB=180°-∠ADB=120°;
故答案为:60°或120°.
点评:本题考查了切线的性质及圆周角定理及多边形的内角和定理.解答此题时,采用了“分类讨论”数学思想,避免了漏解的现象.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,PA,PB是⊙O的切线,切点分别为A,B,且∠APB=50°,点C是优弧
AB
上的一点,则∠ACB的度数为
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,PA、PB是⊙O的切线,A、B为切点,∠OAB=30度.
(1)求∠APB的度数;
(2)当OA=3时,求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,PA、PB是⊙O的两条切线,A、B是切点,连接AB,直线PO交AB于M.请你根据圆的对称性,写出△PAB的三个正确的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠BAC=25°,则∠P=
50
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•谷城县模拟)如图,PA、PB是⊙O 的切线,切点分别是A、B,点C是⊙O上异与点A、B的点,如果∠P=60°,那么∠ACB等于
60°或120°
60°或120°

查看答案和解析>>

同步练习册答案