精英家教网 > 初中数学 > 题目详情
4.如图1,AB=BC=CD=DA,∠A=∠B=∠BCD=∠ADC=90°,点E是AB上一点,点F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)在图1中,如果点G在AD上,且∠GCE=45°,那么EG=BE+DG是否成立,请说明理由.
(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图2,AD∥BC(BC>AD),∠B=90°,AB=BC=12,点E是AB上一点,且∠DCE=45°,BE=4,求DE的长.

分析 (1)证明△CBE≌△CDF,根据全等三角形的性质证明;
(2)根据全等三角形的性质得到CE=CF,∠BCE=∠DCF,BE=DF,证明△ECG≌△FCG,根据全等三角形的性质解答;
(3)根据(2)的结论和勾股定理计算即可.

解答 (1)证明:在△CBE和△CDF中,
$\left\{\begin{array}{l}{BE=DF}\\{∠B=∠ADC}\\{BC=DC}\end{array}\right.$,
∴△CBE≌△CDF,
∴CE=CF;
(2)解:EG=BE+DG成立,
∵△CBE≌△CDF,
∴CE=CF,∠BCE=∠DCF,BE=DF,
∵∠BCD=90°,∠GCE=45°,
∴∠BCE+∠DCG=45°,
∴∠DCF+∠DCG=45°,即∠FCG=45°,
∴∠FCG=∠GCE,
在△ECG和△FCG中,
$\left\{\begin{array}{l}{CE=CF}\\{∠ECG=∠FCG}\\{CG=CG}\end{array}\right.$,
∴△ECG≌△FCG,
∴GE=GF,
∴EG=BE+DG;
(3)作CF⊥AD交AD的延长线于F,
由(2)得,DE=BE+DF,
设DE=x,
∵AB=12,BE=4,
∴AE=8,
∴DF=x-4,AD=12-(x-4)=16-x,
由勾股定理得,82+(16-x)2=x2
解得,x=10,
∴DE的长为10.

点评 本题考查的是全等三角形的判定和性质、勾股定理的应用,掌握三角形全等的判定定理和性质定理是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.如图,在△ABC中,AB=7,BC=4$\sqrt{2}$,∠B=45°,动点P、Q同时出发,点P沿A-C-B运动,在边AC的速度为每秒1个单位长度,在边CB的速度为每秒$\sqrt{2}$个单位长度;点Q沿B-A-B以每秒2个单位长度的速度运动,其中一个动点到达终点时,另一个动点也停止运动,在运动过程中,过点P作AB的垂线与AB交于点D,以PD为边向由作正方形PDEF;过点Q作AB的垂线l.设正方形PDEF与△ABC重叠部分图形的面积为y(平方单位),运动时间为t(s).
(1)当点P运动点C时,PD的长度为4.
(2)求点D在直线l上时t的值.
(3)求y与t之间的函数关系式.
(4)直接写出在运动过程中直线1将图形△ABC的面积分为9:16两部分时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,求这个百分率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知:?ABCD的两边AB,AD的长是关于x的方程x2-mx+$\frac{m}{2}$-$\frac{1}{4}$=0的两个实数根.
(1)当m为何值时,?ABCD是菱形?
(2)若AB的长为2,那么?ABCD的周长是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知a=$\sqrt{2}$+1,b=$\sqrt{2}$-1,求下列代数式的值:
(1)ab
(2)a2+ab+b2  
(3)$\frac{b}{a}$+$\frac{a}{b}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.某汽车厂原计划上半年每月生产汽车20辆,实际生产量规定超过20辆记为“+”,不足20辆记为“-”,实际每月生产量与计划每月生产量相比情况如下表:
月份
增减量/辆+3-2-1+4+2-5
(1)生产量最多的一个月比生产量最少的一个月多生产多少辆?
(2)上半年内的实际总生产量是怎么变化的?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图所示,将长方形纸片先沿虚线AB向右对折,接着将对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展形图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知二次函数C1:y=ax2+4ax(a≠0)的图象顶点为M,显然它与x轴一定有两个不同的交点.
(1)求二次函数C1与x轴的两个交点的坐标;
(2)若二次函数C1与一次函数y=-x-4只有一个交点,求二次函数C1的解析式;
(3)将二次函数C1绕原点中心对称得到求二次函数C2
①直接写出求二次函数C2的解析式(用含a式子表示);
②二次函数C2的图象能否经过二次函数C1的图象顶点M?说明理由;
③直线x=1与二次函数C1、C2分别交于P、Q两点,已知:PQ=2,求二次函数C1的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图为一位旅行者在早晨8时从城市出发到郊外所走的路程S(单位:千米)与时间t(单位:时)的变量关系的图象.根据图象回答问题:
(1)在这个变化过程中,自变量是时间,因变量是路程.
(2)9时所走的路程是多少?他休息了多长时间?
(3)他从休息后直至到达目的地这段时间的平均速度是多少?

查看答案和解析>>

同步练习册答案